Ricardo Franco-Duarte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3512675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms, 2019, 7, 130.	3.6	246
2	Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Molecular Biology and Evolution, 2018, 35, 1712-1727.	8.9	214
3	No Evidence for an mtDNA Role in Sperm Motility: Data from Complete Sequencing of Asthenozoospermic Males. Molecular Biology and Evolution, 2007, 24, 868-874.	8.9	60
4	Population expansion in the North African Late Pleistocene signalled by mitochondrial DNA haplogroup U6. BMC Evolutionary Biology, 2010, 10, 390.	3.2	52
5	Yeast Biodiversity in Vineyard Environments Is Increased by Human Intervention. PLoS ONE, 2016, 11, e0160579.	2.5	50
6	Association between Grape Yeast Communities and the Vineyard Ecosystems. PLoS ONE, 2017, 12, e0169883.	2.5	48
7	Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. BMC Genomics, 2017, 18, 455.	2.8	33
8	Intrastrain genomic and phenotypic variability of the commercial <i>Saccharomyces cerevisiae</i> strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Research, 2015, 15, fov063.	2.3	32
9	Fungal infections diagnosis – Past, present and future. Research in Microbiology, 2022, 173, 103915.	2.1	31
10	Computational approaches for the genetic and phenotypic characterization of a <i>Saccharomyces cerevisiae</i> wine yeast collection. Yeast, 2009, 26, 675-692.	1.7	25
11	Learning from 80 years of studies: a comprehensive catalogue of non- <i>Saccharomyces</i> yeasts associated with viticulture and winemaking. FEMS Yeast Research, 2021, 21, .	2.3	25
12	Modified high-throughput Nile red fluorescence assay for the rapid screening of oleaginous yeasts using acetic acid as carbon source. BMC Microbiology, 2020, 20, 60.	3.3	24
13	New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking. Food Chemistry, 2016, 211, 509-520.	8.2	22
14	Biotechnological Importance of TorulasporaÂdelbrueckii: From the Obscurity to the Spotlight. Journal of Fungi (Basel, Switzerland), 2021, 7, 712.	3.5	22
15	Computational Models for Prediction of Yeast Strain Potential for Winemaking from Phenotypic Profiles. PLoS ONE, 2013, 8, e66523.	2.5	21
16	Computational models reveal genotype–phenotype associations in <i>Saccharomyces cerevisiae</i> . Yeast, 2014, 31, 265-277.	1.7	20
17	Differentiation of Saccharomyces cerevisiae populations from vineyards of the Azores Archipelago: Geography vs Ecology. Food Microbiology, 2018, 74, 151-162.	4.2	20
18	Genotyping of <i>Saccharomyces cerevisiae</i> strains by interdelta sequence typing using automated microfluidics. Electrophoresis, 2011, 32, 1447-1455.	2.4	19

RICARDO FRANCO-DUARTE

#	Article	IF	CITATIONS
19	The influence of Dekkera bruxellensis on the transcriptome of Saccharomyces cerevisiae and on the aromatic profile of synthetic wine must. FEMS Yeast Research, 2017, 17, .	2.3	19
20	Single Cell Oil Production by Oleaginous Yeasts Grown in Synthetic and Waste-Derived Volatile Fatty Acids. Microorganisms, 2020, 8, 1809.	3.6	17
21	Evaluation of T3B fingerprinting for identification of clinical and environmental Sporothrix species. FEMS Microbiology Letters, 2015, 362, .	1.8	16
22	Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production. FEMS Yeast Research, 2017, 17, .	2.3	15
23	Production of Dicarboxylic Acid Platform Chemicals Using Yeasts. , 2016, , 237-269.		14
24	A glimpse at an early stage of microbe domestication revealed in the variable genome of <i>Torulaspora delbrueckii</i> , an emergent industrial yeast. Molecular Ecology, 2023, 32, 2396-2412.	3.9	12
25	Oral <i>Candida albicans</i> colonization in healthy individuals: prevalence, genotypic diversity, stability along time and transmissibility. Journal of Oral Microbiology, 2020, 12, 1820292.	2.7	11
26	Improvement of Torulaspora delbrueckii Genome Annotation: Towards the Exploitation of Genomic Features of a Biotechnologically Relevant Yeast. Journal of Fungi (Basel, Switzerland), 2021, 7, 287.	3.5	10
27	Anti-androgenic effects of sewage treatment plant effluents in the prosobranch gastropod Nucella lapillus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2008, 148, 87-93.	2.6	9
28	Torulaspora delbrueckii Phenotypic and Metabolic Profiling towards Its Biotechnological Exploitation. Journal of Fungi (Basel, Switzerland), 2022, 8, 569.	3.5	9
29	Starmerella vitis f.a., sp. nov., a yeast species isolated from flowers and grapes. Antonie Van Leeuwenhoek, 2020, 113, 1289-1298.	1.7	8
30	Clavispora santaluciae f.a., sp. nov., a novel ascomycetous yeast species isolated from grapes. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 6307-6312.	1.7	6
31	Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. Journal of Developmental Biology, 2016, 4, 33.	1.7	4
32	Aquatic Hyphomycete Taxonomic Relatedness Translates into Lower Genetic Divergence of the Nitrate Reductase Gene. Journal of Fungi (Basel, Switzerland), 2021, 7, 1066.	3.5	3
33	Optimization of a Quantitative PCR Methodology for Detection of Aspergillus spp. and Rhizopus arrhizus. Molecular Diagnosis and Therapy, 2022, 26, 511-525.	3.8	3
34	The Islamization of Iberian Peninsula: A demographic shift or a cultural change? Search for an answer using extant and ancient DNA from Mértola (Southeast Portugal). International Congress Series, 2006, 1288, 828-830.	0.2	2
35	Whole-Genome Sequencing and Annotation of the Yeast Clavispora santaluciae Reveals Important Insights about Its Adaptation to the Vineyard Environment. Journal of Fungi (Basel, Switzerland), 2022, 8, 52.	3.5	2
36	Population Analysis and Evolution of Saccharomyces cerevisiae Mitogenomes. Microorganisms, 2020, 8, 1001.	3.6	1

#	Article	IF	CITATIONS
37	Metabolic profile of <i>Candida albicans</i> and <i>Candida parapsilosis</i> interactions within dual-species biofilms. FEMS Microbiology Ecology, 2022, 98, .	2.7	1