
Robert Chapman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3512462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chemical Society Reviews, 2018, 47, 4357-4387.	18.7	313
2	Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chemical Society Reviews, 2012, 41, 6023.	18.7	265
3	Oxygen tolerant photopolymerization for ultralow volumes. Polymer Chemistry, 2017, 8, 5012-5022.	1.9	187
4	Highly Controlled Open Vessel RAFT Polymerizations by Enzyme Degassing. Macromolecules, 2014, 47, 8541-8547.	2.2	177
5	An Oxygenâ€Tolerant PETâ€RAFT Polymerization for Screening Structure–Activity Relationships. Angewandte Chemie - International Edition, 2018, 57, 1557-1562.	7.2	163
6	All Wrapped up: Stabilization of Enzymes within Single Enzyme Nanoparticles. Journal of the American Chemical Society, 2019, 141, 2754-2769.	6.6	157
7	Combinatorial Lowâ€Volume Synthesis of Wellâ€Defined Polymers by Enzyme Degassing. Angewandte Chemie - International Edition, 2016, 55, 4500-4503.	7.2	117
8	Multivalent Nanoparticle Networks Enable Point-of-Care Detection of Human Phospholipase-A2 in Serum. ACS Nano, 2015, 9, 2565-2573.	7.3	97
9	A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomaterialia, 2018, 65, 102-111.	4.1	92
10	Pushing the Limits of High Throughput PET-RAFT Polymerization. Macromolecules, 2018, 51, 7600-7607.	2.2	90
11	Living in the Fast Lane—High Throughput Controlled/Living Radical Polymerization. Macromolecules, 2019, 52, 3-23.	2.2	87
12	Modular design for the controlled production of polymeric nanotubes from polymer/peptide conjugates. Polymer Chemistry, 2011, 2, 1956.	1.9	81
13	Synthetic Strategies for the Design of Peptide/Polymer Conjugates. Polymer Reviews, 2011, 51, 214-234.	5.3	77
14	Synthesis and Immunological Evaluation of Selfâ€Assembling and Selfâ€Adjuvanting Tricomponent Glycopeptide Cancerâ€Vaccine Candidates. Chemistry - A European Journal, 2012, 18, 16540-16548.	1.7	63
15	Integrative Selfâ€Assembly of Graphene Quantum Dots and Biopolymers into a Versatile Biosensing Toolkit. Advanced Functional Materials, 2015, 25, 3183-3192.	7.8	62
16	A Selfâ€Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization. Angewandte Chemie - International Edition, 2018, 57, 10102-10106.	7.2	59
17	Polymerization Amplified Detection for Nanoparticle-Based Biosensing. Nano Letters, 2014, 14, 6368-6373.	4.5	58
18	Combinatorial Lowâ€Volume Synthesis of Wellâ€Defined Polymers by Enzyme Degassing. Angewandte Chemie, 2016, 128, 4576-4579.	1.6	58

ROBERT CHAPMAN

#	Article	IF	CITATIONS
19	Structure elucidation and control of cyclic peptide-derived nanotube assemblies in solution. Chemical Science, 2013, 4, 2581.	3.7	52
20	Synthesis of Self-assembling Cyclic Peptide-polymer Conjugates using Click Chemistry. Australian Journal of Chemistry, 2010, 63, 1169.	0.5	51
21	Waterâ€Soluble and pHâ€Responsive Polymeric Nanotubes from Cyclic Peptide Templates. Chemistry - A European Journal, 2013, 19, 1955-1961.	1.7	48
22	Drug Conjugation to Cyclic Peptide–Polymer Selfâ€Assembling Nanotubes. Chemistry - A European Journal, 2014, 20, 12745-12749.	1.7	44
23	Multiâ€shell Soft Nanotubes from Cyclic Peptide Templates. Advanced Materials, 2013, 25, 1170-1172.	11.1	42
24	Thermoresponsive cyclic peptide – poly(2-ethyl-2-oxazoline) conjugate nanotubes. Chemical Communications, 2013, 49, 6522.	2.2	42
25	Automation of Controlled/Living Radical Polymerization. Advanced Intelligent Systems, 2020, 2, 1900126.	3.3	37
26	Pushing the limits of copper mediated azide–alkyne cycloaddition (CuAAC) to conjugate polymeric chains to cyclic peptides. Polymer Chemistry, 2012, 3, 1820.	1.9	36
27	Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiberâ€initiated Controlled Radical Polymerization. Advanced Functional Materials, 2015, 25, 5748-5757.	7.8	35
28	Swollen Micelles for the Preparation of Gated, Squeezable, pH-Responsive Drug Carriers. ACS Applied Materials & Interfaces, 2017, 9, 13865-13874.	4.0	35
29	Polymeric Nanocapsules for Enzyme Stabilization in Organic Solvents. Macromolecules, 2018, 51, 438-446.	2.2	35
30	Label-Free Multimodal Protease Detection Based on Protein/Perylene Dye Coassembly and Enzyme-Triggered Disassembly. Analytical Chemistry, 2014, 86, 6410-6417.	3.2	33
31	An Oxygenâ€Tolerant PETâ€RAFT Polymerization for Screening Structure–Activity Relationships. Angewandte Chemie, 2018, 130, 1573-1578.	1.6	32
32	Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication, 2022, 14, 015006.	3.7	27
33	A Dual Wavelength Polymerization and Bioconjugation Strategy for High Throughput Synthesis of Multivalent Ligands. Journal of the American Chemical Society, 2019, 141, 19823-19830.	6.6	25
34	Thioketoneâ€Mediated Polymerization with Dithiobenzoates: Proof for the Existence of Stable Radical Intermediates in RAFT Polymerization. Macromolecular Rapid Communications, 2012, 33, 984-990.	2.0	21
35	Point of care testing of phospholipase A2 group IIA for serological diagnosis of rheumatoid arthritis. Nanoscale, 2016, 8, 4482-4485.	2.8	21
36	Tuneable peptide cross-linked nanogels for enzyme-triggered protein delivery. Journal of Materials Chemistry B, 2020, 8, 8894-8907.	2.9	21

ROBERT CHAPMAN

#	Article	IF	CITATIONS
37	Oxidation of graphene with variable defects: alternately symmetrical escape and self-restructuring of carbon rings. Nanoscale, 2020, 12, 10140-10148.	2.8	20
38	Controlled poly(olefin)s via decarboxylation of poly(acrylic acid). Polymer Chemistry, 2017, 8, 6636-6643.	1.9	19
39	Synthesis and self-assembly of temperature-responsive copolymers based on N-vinylpyrrolidone and triethylene glycol methacrylate. Polymer Chemistry, 2015, 6, 4116-4122.	1.9	17
40	Real time monitoring of peptide delivery <i>in vitro</i> using high payload pH responsive nanogels. Polymer Chemistry, 2020, 11, 425-432.	1.9	16
41	Polyion Complex Micelles for Protein Delivery Benefit from Flexible Hydrophobic Spacers in the Binding Group. Macromolecular Rapid Communications, 2020, 41, e2000208.	2.0	15
42	Polyion Complex-Templated Synthesis of Cross-Linked Single-Enzyme Nanoparticles. Macromolecules, 2020, 53, 5487-5496.	2.2	12
43	A Selfâ€Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization. Angewandte Chemie, 2018, 130, 10259-10263.	1.6	11
44	Well-Defined Polymers for Nonchemistry Laboratories using Oxygen Tolerant Controlled Radical Polymerization. Journal of Chemical Education, 2020, 97, 549-556.	1.1	10
45	The Core–Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules, 2021, 22, 4569-4581.	2.6	10
46	PET-RAFT Enables Efficient and Automated Multiblock Star Synthesis. Macromolecules, 2022, 55, 5938-5945.	2.2	10
47	Correlation between polymer architecture and polyion complex micelle stability with proteins in spheroid cancer models as seen by light-sheet microscopy. Polymer Chemistry, 2019, 10, 1221-1230.	1.9	9
48	Phospholipase A2 as a point of care alternative to serum amylase and pancreatic lipase. Nanoscale, 2016, 8, 11834-11839.	2.8	8
49	A High Throughput Approach for Designing Polymers That Mimic the TRAIL Protein. Nano Letters, 2022, , .	4.5	6
50	Polymer mediated transport of the Hsp90 inhibitor LB76, a polar cyclic peptide, produces an Hsp90 cellular phenotype. Chemical Communications, 2019, 55, 4515-4518.	2.2	5
51	Regulating the uptake of poly(N-(2-hydroxypropyl) methacrylamide)-based micelles in cells cultured on micropatterned surfaces. Biointerphases, 2021, 16, 041002.	0.6	2
52	Delivering hydrophilic peptide inhibitors of heat shock protein 70 into cancer cells. Bioorganic Chemistry, 2022, 122, 105713.	2.0	1
53	Controlled Polymerization: Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiberâ€initiated Controlled Radical Polymerization (Adv. Funct. Mater. 36/2015). Advanced Functional Materials, 2015, 25, 5718-5718.	7.8	0

54 Peptide–Polymer Conjugates: Synthetic Design Strategies. , 0, , 5892-5906.

0

55 Peptide–Polymer Conjugates: Synthetic Design Strategies. , 2017, , 1289-1303. 0	#	Article	IF	CITATIONS
	55	Peptide–Polymer Conjugates: Synthetic Design Strategies. , 2017, , 1289-1303.		Ο