Reese E Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3512224/publications.pdf

Version: 2024-02-01

218677 214800 2,385 74 26 47 h-index citations g-index papers 75 75 75 2701 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fracture mechanisms of sodium silicate glasses. International Journal of Applied Glass Science, 2023, 14, 27-37.	2.0	3
2	Inelastic relaxation in silica via reactive molecular dynamics. Journal of the American Ceramic Society, 2022, 105, 2517-2526.	3.8	7
3	Sensitivity of void mediated failure to geometric design features of porous metals. International Journal of Solids and Structures, 2022, 236-237, 111309.	2.7	0
4	Sensitivity of the strength and toughness of concrete to the properties of the interfacial transition zone. Construction and Building Materials, 2022, 336, 126875.	7.2	9
5	A heteroencoder architecture for prediction of failure locations in porous metals using variational inference. Computer Methods in Applied Mechanics and Engineering, 2022, 398, 115236.	6.6	1
6	Modeling strength and failure variability due to porosity in additively manufactured metals. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113471.	6.6	16
7	Simulation of hardened cement degradation and estimation of uncertainty in predicted failure times with peridynamics. Construction and Building Materials, 2021, 286, 122927.	7.2	6
8	Effects of Strain Rate and Temperature on the Mechanical Properties of Simulated Silica Ionogels. Journal of Physical Chemistry B, 2021, 125, 8659-8671. Tuning the ordinal Lighter relation concentrations for applymath	2.6	1
9	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:n (<mml:math) (xmlns:mml="http://www.w3.org/1998/Math</td><td>ni>X</mml
/MathML" 0.784314="" 1="" 10="" 422="" 50="" :<br="" etqq1="" overlock="" rgbt="" td="" tf="" tj="">2:4</mml:math)></mml:n </mml:msub></mml:mrow>	:mi> <mml:m > çmml:mrov</mml:m 	
10	Physical Review Materials, 2021, 5 A minimally invasive, efficient method for propagation ofÂfullâ€field uncertainty in solid dynamics. International Journal for Numerical Methods in Engineering, 2021, 122, 6955-6983.	2.8	4
11	Molecular-level understanding of gibbsite particle aggregation in water. Journal of Colloid and Interface Science, 2021, 600, 310-317.	9.4	18
12	Effects of nanoconfinement and surface charge on iron adsorption on mesoporous silica. Environmental Science: Nano, 2021, 8, 1992-2005.	4.3	13
13	Computational Study of the Structure and Transport in Pyrrolidinium-Li-TFSI-Silica Ionogels. Journal of Physical Chemistry B, 2021, 125, 13003-13014.	2.6	1
14	Automated high-throughput tensile testing reveals stochastic process parameter sensitivity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138632.	5.6	32
15	Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model. Machine Learning: Science and Technology, 2020, 1, 035005.	5.0	17
16	Correlating structure and transport behavior in Li ⁺ and O ₂ containing pyrrolidinium ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 17176-17189.	2.8	8
17	Mechanisms of Silica Fracture in Aqueous Electrolyte Solutions. Frontiers in Materials, 2019, 6, .	2.4	9
18	Insight into hydrogen production through molecular simulation of an electrode-ionomer electrolyte system. Journal of Chemical Physics, 2019, 151, 034702.	3.0	2

#	Article	IF	CITATIONS
19	Revealing Transition States during the Hydration of Clay Minerals. Journal of Physical Chemistry Letters, 2019, 10, 3704-3709.	4.6	49
20	Bayesian modeling of inconsistent plastic response due to material variability. Computer Methods in Applied Mechanics and Engineering, 2019, 353, 183-200.	6.6	7
21	Atomic-scale interaction of a crack and an infiltrating fluid. Chemical Physics Letters: X, 2019, 737, 100005.	2.1	2
22	Influence of defects on the thermal conductivity of compressed LiF. Physical Review B, 2018, 97, .	3.2	4
23	Interaction of NaOH solutions with silica surfaces. Journal of Colloid and Interface Science, 2018, 516, 128-137.	9.4	39
24	Chemo-mechanical coupling in kerogen gas adsorption/desorption. Physical Chemistry Chemical Physics, 2018, 20, 12390-12395.	2.8	76
25	Crack propagation in silica from reactive classical molecular dynamics simulations. Journal of the American Ceramic Society, 2018, 101, 1488-1499.	3.8	36
26	Structural Properties of Aqueous Solutions at the (100) and (101) Goethite Surfaces by Molecular Dynamics Simulation. Langmuir, 2018, 34, 14498-14510.	3.5	10
27	Chemical Effects on Subcritical Fracture in Silica From Molecular Dynamics Simulations. Journal of Geophysical Research: Solid Earth, 2018, 123, 9341-9354.	3.4	28
28	Enhanced Ion Adsorption on Mineral Nanoparticles. Langmuir, 2018, 34, 5926-5934.	3.5	22
29	An atomic-scale evaluation of the fracture toughness of silica glass. Journal of Physics Condensed Matter, 2018, 30, 245901.	1.8	3
30	Molecular dynamics studies of InGaN growth on nonpolar <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mn>11<td>mn>.4 mml</td><td>:mover) Tj ET</td></mml:mn></mml:mrow></mml:math>	mn>.4 mml	:mover) Tj ET
31	GaN surfaces. Physical Review Materials, 2018, 2, . Oxygen solubility and transport in Li–air battery electrolytes: establishing criteria and strategies for electrolyte design. Energy and Environmental Science, 2017, 10, 1167-1179.	30.8	103
32	Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces. Journal of Applied Physics, 2017, 121, 195301.	2.5	30
33	Surface Structure and Stability of Partially Hydroxylated Silica Surfaces. Langmuir, 2017, 33, 3882-3891.	3.5	47
34	Assessing Electrolyte Transport Properties with Molecular Dynamics. Journal of the Electrochemical Society, 2017, 164, A1258-A1267.	2.9	5
35	Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering. Scientific Reports, 2017, 7, 15286.	3.3	18
36	Nanostructural control of methane release in kerogen and its implications to wellbore production decline. Scientific Reports, 2016, 6, 28053.	3.3	94

#	Article	IF	Citations
37	Principles of Coarse-Graining and Coupling Using the Atom-to-Continuum Method. Springer Series in Materials Science, 2016, , 223-259.	0.6	4
38	Estimates of crystalline LiF thermal conductivity at high temperature and pressure by a Green-Kubo method. Physical Review B, 2016, 94, .	3.2	14
39	Metal–organic frameworks for thermoelectric energy-conversion applications. MRS Bulletin, 2016, 41, 877-882.	3.5	26
40	Sustainability: GEOC's Perspective. ACS Symposium Series, 2015, , 105-117.	0.5	0
41	Thin Film Thermoelectric Metal–Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity. Advanced Materials, 2015, 27, 3453-3459.	21.0	227
42	Modeling Interfacial Glassâ€Water Reactions: Recent Advances and Current Limitations. International Journal of Applied Glass Science, 2014, 5, 421-435.	2.0	34
43	On the microscopic definitions of the dislocation density tensor. Mathematics and Mechanics of Solids, 2014, 19, 744-757.	2.4	2
44	Thermal boundary conductance across metal-gallium nitride interfaces from 80 to 450 K. Applied Physics Letters, 2014, 105, .	3.3	46
45	Spatial resolution of the electrical conductance of ionic fluids using a Green-Kubo method. Journal of Chemical Physics, 2014, 141, 184110.	3.0	4
46	Thermal boundary conductance between Al films and GaN nanowires investigated with molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 9403-9410.	2.8	11
47	The application of an atomistic <i>J</i> -integral to a ductile crack. Journal of Physics Condensed Matter, 2013, 25, 155402.	1.8	18
48	Molecular Simulations of Carbon Dioxide and Water: Cation Solvation. Environmental Science & Emp; Technology, 2013, 47, 87-94.	10.0	47
49	Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations. Physical Review B, 2013, 87, .	3.2	71
50	Molecular dynamics studies of material property effects on thermal boundary conductance. Physical Chemistry Chemical Physics, 2013, 15, 11078.	2.8	40
51	Firstâ€Principles Study of Hydrolysis Reaction Barriers in a Sodium Borosilicate Glass. International Journal of Applied Glass Science, 2013, 4, 395-407.	2.0	66
52	Investigation of size and electronic effects on Kapitza conductance with non-equilibrium molecular dynamics. Applied Physics Letters, 2013, 102, .	3.3	59
53	Influence of crystallographic orientation and anisotropy on Kapitza conductance via classical molecular dynamics simulations. Journal of Applied Physics, 2012, 112, 093515.	2.5	21
54	Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis. Journal of Chemical Physics, 2012, 136, 154102.	3.0	48

#	Article	IF	Citations
55	A Long-Range Electric Field Solver for Molecular Dynamics Based on Atomistic-to-Continuum Modeling. Journal of Chemical Theory and Computation, 2011, 7, 1736-1749.	5. 3	20
56	Simulated Real-Time Detection of a Small Molecule on a Carbon Nanotube Cantilever. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1364-1384.	0.4	2
57	Effects of cutoff functions of Tersoff potentials on molecular dynamics simulations of thermal transport. Modelling and Simulation in Materials Science and Engineering, 2011, 19, 025004.	2.0	17
58	An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields. Journal of Physics Condensed Matter, 2011, 23, 015002.	1.8	22
59	Electron transport enhanced molecular dynamics for metals and semiâ€metals. International Journal for Numerical Methods in Engineering, 2010, 83, 940-967.	2.8	23
60	A material frame approach for evaluating continuum variables in atomistic simulations. Journal of Computational Physics, 2010, 229, 2364-2389.	3.8	67
61	The construction and application of an atomistic J-integral via Hardy estimates of continuum fields. Journal of the Mechanics and Physics of Solids, 2010, 58, 1318-1337.	4.8	45
62	Efficient non-reflecting boundary condition constructed via optimization of damped layers. Physical Review B, 2010, 81, .	3.2	13
63	Analytical law for size effects on thermal conductivity of nanostructures. Physical Review B, 2010, 81,	3.2	14
64	A homogeneous nonequilibrium molecular dynamics method for calculating the heat transport coefficient of mixtures and alloys. Journal of Chemical Physics, 2010, 133, 034122.	3.0	14
65	Molecular dynamics prediction of thermal conductivity of GaN films and wires at realistic length scales. Physical Review B, 2010, 81, .	3.2	25
66	A homogeneous nonequilibrium molecular dynamics method for calculating thermal conductivity with a three-body potential. Journal of Chemical Physics, 2009, 130, 204106.	3.0	41
67	Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals. Physical Review B, 2009, 79, .	3.2	94
68	Generalization of the homogeneous nonequilibrium molecular dynamics method for calculating thermal conductivity to multibody potentials. Physical Review E, 2009, 80, 047702.	2.1	14
69	A family of simple two-pass dual formulations for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 782-802.	6.6	20
70	Simulating anisotropic frictional response using smoothly interpolated traction fields. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 588-613.	6.6	17
71	Calculation of stress in atomistic simulation. Modelling and Simulation in Materials Science and Engineering, 2004, 12, S319-S332.	2.0	379
72	A novel threeâ€dimensional contact finite element based on smooth pressure interpolations. International Journal for Numerical Methods in Engineering, 2001, 51, 791-811.	2.8	29

#	Article	IF	CITATIONS
73	A yield-limited Lagrange multiplier formulation for frictional contact. International Journal for Numerical Methods in Engineering, 2000, 48, 1127-1149.	2.8	21
74	A novel finite element formulation for frictionless contact problems. International Journal for Numerical Methods in Engineering, 1995, 38, 2603-2617.	2.8	35