Peter Walentek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3512216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease. Cells Tissues Organs, 2022, 211, 736-753.	2.3	13
2	A simple method to generate human airway epithelial organoids with externally orientated apical membranes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L420-L437.	2.9	13
3	Spectrum of Genetic Variants in a Cohort of 37 Laterality Defect Cases. Frontiers in Genetics, 2022, 13, 861236.	2.3	2
4	Microridge-like structures anchor motile cilia. Nature Communications, 2022, 13, 2056.	12.8	13
5	Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. Journal of Cell Science, 2022, 135, .	2.0	3
6	Notch signaling induces either apoptosis or cell fate change in multiciliated cells during mucociliary tissue remodeling. Developmental Cell, 2021, 56, 525-539.e6.	7.0	27
7	The highly conserved FOXJ1 target CFAP161 is dispensable for motile ciliary function in mouse and Xenopus. Scientific Reports, 2021, 11, 13333.	3.3	3
8	<i>Xenopus</i> epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia. Genesis, 2021, 59, e23406.	1.6	9
9	The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. Autophagy, 2020, 16, 1618-1634.	9.1	43
10	ΔN-Tp63 Mediates Wnt/β-Catenin-Induced Inhibition of Differentiation in Basal Stem Cells of Mucociliary Epithelia. Cell Reports, 2019, 28, 3338-3352.e6.	6.4	48
11	Planar Cell Polarity in Ciliated Epithelia. , 2018, , 177-209.		5
12	Na ⁺ /H ⁺ Exchangers Are Required for the Development and Function of Vertebrate Mucociliary Epithelia. Cells Tissues Organs, 2018, 205, 279-292.	2.3	10
13	Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis. Methods in Molecular Biology, 2018, 1865, 251-263.	0.9	14
14	Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos. Developmental Biology, 2018, 442, 276-287.	2.0	27
15	What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in <i>Xenopus</i> to study cilia and mucociliary epithelia. Genesis, 2017, 55, e23001.	1.6	72
16	Ciliary transcription factors in cancer - how understanding ciliogenesis can promote the detection and prognosis of cancer types. Journal of Pathology, 2016, 239, 6-9.	4.5	7
17	Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis. ELife, 2016, 5, .	6.0	80
18	ATP4a is required for development and function of the Xenopus mucociliary epidermis – a potential model to study proton pump inhibitor-associated pneumonia. Developmental Biology, 2015, 408, 292-304.	2.0	32

PETER WALENTEK

#	Article	IF	CITATIONS
19	The Alternative Splicing Regulator Tra2b Is Required for Somitogenesis and Regulates Splicing of an Inhibitory Wnt11b Isoform. Cell Reports, 2015, 10, 527-536.	6.4	26
20	ATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles. Data in Brief, 2015, 4, 22-31.	1.0	10
21	microRNAs and cilia. Cell Cycle, 2014, 13, 2315-2316.	2.6	10
22	A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of <i>Xenopus</i> tadpoles. Development (Cambridge), 2014, 141, 1526-1533.	2.5	52
23	miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature, 2014, 510, 115-120.	27.8	196
24	Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia, 2013, 2, 12.	1.8	52
25	Wnt11b Is Involved in Cilia-Mediated Symmetry Breakage during Xenopus Left-Right Development. PLoS ONE, 2013, 8, e73646.	2.5	34
26	Linking early determinants and cilia-driven leftward flow in left–right axis specification of Xenopus laevis: A theoretical approach. Differentiation, 2012, 83, S67-S77.	1.9	21
27	ATP4a Is Required for Wnt-Dependent Foxj1 Expression and Leftward Flow in Xenopus Left-Right Development. Cell Reports, 2012, 1, 516-527.	6.4	73
28	Serotonin Signaling Is Required for Wnt-Dependent GRP Specification and Leftward Flow in Xenopus. Current Biology, 2012, 22, 33-39.	3.9	60
29	Gastric H+/K + ATPase-dependent Wnt-signaling is required for FoxJ1 expression and cilia polarization in Xenopus left–right axis formation. Developmental Biology, 2011, 356, 209.	2.0	0
30	Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Developmental Biology, 2010, 339, 188-199.	2.0	176