Pengcheng Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3512185/publications.pdf

Version: 2024-02-01

1039880 1199470 12 376 9 12 citations g-index h-index papers 12 12 12 365 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Positive effects of phosphotungstic acid on the in-situ solid-state polymerization and visible light photocatalytic activity of polyimide-based photocatalyst. Applied Catalysis B: Environmental, 2018, 226, 487-498.	10.8	110
2	The visible-light-driven type III heterojunction H3PW12O40/TiO2-In2S3: A photocatalysis composite with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2017, 696, 51-59.	2.8	59
3	Self-assembly of tungstophosphoric acid/acidified carbon nitride hybrids with enhanced visible-light-driven photocatalytic activity for the degradation of imidacloprid and acetamiprid. Applied Surface Science, 2018, 456, 259-269.	3.1	40
4	In situ polymerization synthesis of Z-scheme tungsten trioxide/polyimide photocatalyst with enhanced visible-light photocatalytic activity. Applied Surface Science, 2018, 428, 1130-1140.	3.1	39
5	H ₃ PW ₁₂ O ₄₀ /TiO ₂ –In ₂ O ₃ : a visible light driven type-II heterojunction photocatalyst for the photocatalytic degradation of imidacloprid. RSC Advances, 2016, 6, 73301-73307.	1.7	30
6	Extended light absorption and enhanced visible-light photocatalytic degradation capacity of phosphotungstate/polyimide photocatalyst based on intense interfacial interaction and alternate stacking structure. Applied Surface Science, 2019, 465, 125-135.	3.1	27
7	Effect of precursor types on the performance of polyimide: A metal-free visible-light-driven photocatalyst for effective photocatalytic degradation of pollutants. Catalysis Today, 2020, 340, 225-235.	2.2	21
8	In-situ solid phase thermal transformation of self-assembled melamine phosphotungstates produce efficient visible light photocatalysts. Journal of Colloid and Interface Science, 2019, 551, 208-218.	5.0	18
9	Sulfonic Acids Supported on UiO-66 as Heterogeneous Catalysts for the Esterification of Fatty Acids for Biodiesel Production. Catalysts, 2020, 10, 1271.	1.6	14
10	Porous nanostructure and enhanced charge transfer in graphitic carbon nitride fabricated by polyoxometalate oxidation etching. Journal of Alloys and Compounds, 2019, 805, 654-662.	2.8	9
11	Carbon nitrides modified with suitable electron withdrawing groups enhancing the visible-light-driven photocatalytic activity for degradation of the Rhodamine B. Materials Research Bulletin, 2018, 106, 204-212.	2.7	5
12	Physicochemical Property and Fatty Acid Profile of <i>Cephalotaxus fortunei</i> Nut Oils. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1121-1130.	0.8	4