Vigneshwaran Nadanathangam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3511361/publications.pdf

Version: 2024-02-01

54 papers 4,471 citations

236612 25 h-index 205818 48 g-index

56 all docs

56 docs citations

56 times ranked 5788 citing authors

#	Article	IF	Citations
1	Effect of green tea extract, ginger essential oil and nanofibrillated cellulose reinforcements in starch films on the keeping quality of strawberries. Journal of Food Processing and Preservation, 2022, 46, .	0.9	12
2	Nanocellulose reinforced corn starch-based biocomposite films: Composite optimization, characterization and storage studies. Food Packaging and Shelf Life, 2022, 33, 100860.	3.3	21
3	Application of nanocrystals as antimicrobials. , 2022, , 315-328.		O
4	Nanopore-based metagenomic analysis of the impact of nanoparticles on soil microbial communities. Heliyon, 2022, 8, e09693.	1.4	4
5	Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology. Bulletin of Materials Science, 2022, 45, .	0.8	3
6	Development of multi-functional cotton surface for sportswear using nano zinc oxide. Journal of Natural Fibers, 2020, 17, 346-358.	1.7	2
7	Microbial Production of Nanolignin from Cotton Stalks and Its Application onto Cotton and Linen Fabrics for Multifunctional Properties. Waste and Biomass Valorization, 2020, 11 , 6073-6083.	1.8	14
8	Shifts in metabolic patterns of soil bacterial communities on exposure to metal engineered nanomaterials. Ecotoxicology and Environmental Safety, 2020, 189, 110012.	2.9	25
9	Fibrillation of Coconut Fibers by Mechanical Refining to Enhance Its Reinforcing Potential in Epoxy Composites. Fibers and Polymers, 2020, 21, 2111-2117.	1.1	7
10	Toxicological effects of TiO2 nanoparticles on plant growth promoting soil bacteria. Emerging Contaminants, 2020, 6, 87-92.	2.2	45
11	Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydrate Polymers, 2019, 222, 115021.	5.1	74
12	Effects of Nanoparticles on Plant Growth-Promoting Bacteria in Indian Agricultural Soil. Agronomy, 2019, 9, 140.	1.3	61
13	Improving the stability of bacteriocin extracted from Enterococcus faecium by immobilization onto cellulose nanocrystals. Carbohydrate Polymers, 2019, 209, 172-180.	5.1	23
14	Nanomaterials for Active and Smart Packaging of Food. , 2019, , 581-600.		2
15	Nanocellulose from Agro-Residues and Forest Biomass for Pulp and Paper Product. , 2019, , 355-372.		1
16	Nanocellulose as Functional Filler in Starch/Polyvinyl Alcohol Film for Preparation of Urea Biosensor. Current Science, 2018, 114, 897.	0.4	6
17	A simple and efficient protocol to develop durable multifunctional property to cellulosic materials using in situ generated nano-ZnO. Cellulose, 2017, 24, 3399-3410.	2.4	26
18	Extraction of nanolignin from coconut fibers by controlled microbial hydrolysis. Industrial Crops and Products, 2017, 109, 420-425.	2.5	45

2

#	Article	IF	CITATIONS
19	Microbial production of coconut fiber nanolignin for application onto cotton and linen fabrics to impart multifunctional properties. Surfaces and Interfaces, 2017, 9, 147-153.	1.5	12
20	Nanocellulose-Polymer Composites for Applications in Food Packaging: Current Status, Future Prospects and Challenges. Polymer-Plastics Technology and Engineering, 2017, 56, 805-823.	1.9	106
21	Moisture management finish on cotton fabric by electrospraying. Textile Reseach Journal, 2017, 87, 2154-2165.	1.1	17
22	Micro/Nano-fibrillated Cellulose from Cotton Linters as Strength Additive in Unbleached Kraft Paper: Experimental, Semi-empirical, and Mechanistic Studies. BioResources, 2017, 12, .	0.5	15
23	Nanocellulose induces cellulase production in Trichoderma reesei. Process Biochemistry, 2016, 51, 1452-1457.	1.8	11
24	Durable multifunctional finishing of cotton fabrics by in situ synthesis of nano-ZnO. Applied Surface Science, 2016, 390, 936-940.	3.1	56
25	Ionic liquid mediated application of nano zinc oxide on cotton fabric for multi-functional properties. Journal of the Textile Institute, 2016, , 1-9.	1.0	6
26	Nanocellulose Production Using Cellulose Degrading Fungi. Fungal Biology, 2016, , 321-331.	0.3	5
27	Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Applied Nanoscience (Switzerland), 2015, 5, 281-290.	1.6	32
28	Energy Efficient Manufacturing of Nanocellulose by Chemo- and Bio-Mechanical Processes: A Review. World Journal of Nano Science and Engineering, 2015, 05, 204-212.	0.3	53
29	Cotton linter nano-fibers as the potential reinforcing agent for guar gum. Iranian Polymer Journal (English Edition), 2014, 23, 869-879.	1.3	12
30	Preparation of Cellulose Nano-Whiskers and Its Effect on Performance Properties of & lt; l> k< ll l> -Carrageenan. Journal of Biobased Materials and Bioenergy, 2014, 8, 618-626.	0.1	3
31	Nanotechnology in Electronics. , 2014, , 32-51.		0
32	Evaluation of twoâ€stage process (refining and homogenization) for nanofibrillation of cotton fibers. Polymer Engineering and Science, 2013, 53, 1590-1597.	1.5	10
33	A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme and Microbial Technology, 2013, 52, 20-25.	1.6	110
34	Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. International Journal of Biological Macromolecules, 2012, 51, 1008-1013.	3.6	95
35	Effect of Fenton's pretreatment on cotton cellulosic substrates to enhance its enzymatic hydrolysis response. Bioresource Technology, 2012, 103, 219-226.	4.8	41
36	Biomolecules–Nanoparticles: Interaction in Nanoscale. , 2011, , 135-150.		3

#	Article	IF	CITATIONS
37	Nanofibrillation of cotton fibers by disc refiner and its characterization. Fibers and Polymers, 2011, 12, 399-404.	1.1	65
38	Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film. Applied Nanoscience (Switzerland), 2011, 1, 137-142.	1.6	36
39	Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydrate Polymers, 2011, 83, 122-129.	5.1	229
40	Functional behaviour of paper coated with zinc oxide–soluble starch nanocomposites. Journal of Materials Processing Technology, 2010, 210, 1962-1967.	3.1	43
41	Modification of textile surfaces using nanoparticles. , 2009, , 164-184.		10
42	Functional Behaviour of Polyethylene-ZnO Nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 4121-4126.	0.9	7
43	Functional Finishing of Cotton Fabrics Using Silver Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 1893-1897.	0.9	223
44	Silverâ^'Protein (Coreâ^'Shell) Nanoparticle Production Using Spent Mushroom Substrate. Langmuir, 2007, 23, 7113-7117.	1.6	191
45	Functional behaviour of polypropylene/ZnO–soluble starch nanocomposites. Nanotechnology, 2007, 18, 385702.	1.3	87
46	Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Letters, 2007, 61, 1413-1418.	1.3	747
47	Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology, 2006, 17, 5087-5095.	1.3	420
48	A novel one-pot â€~green' synthesis of stable silver nanoparticles using soluble starch. Carbohydrate Research, 2006, 341, 2012-2018.	1.1	582
49	Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids and Surfaces B: Biointerfaces, 2006, 53, 55-59.	2.5	321
50	Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 173-178.	2.0	120
51	Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science, 2006, 29, 641-645.	0.8	374
52	Autofluorescence characterization of advanced glycation end products of hemoglobin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 163-170.	2.0	23
53	Evaluation of Autofluorescent Property of Hemoglobin-Advanced Glycation End Product as a Long-Term Glycemic Index of Diabetes. Diabetes, 2003, 52, 1041-1046.	0.3	22
54	Fluorescence and biochemical characterization of glycated hemoglobin. Macromolecular Symposia, 2003, 193, 119-128.	0.4	4