Chengyin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/351115/publications.pdf

Version: 2024-02-01

		185998	223531
118	2,666	28	46
papers	citations	h-index	g-index
110	110	110	1041
118	118	118	1341
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photoelectronic mapping of the spin–orbit interaction of intense light fields. Nature Photonics, 2021, 15, 115-120.	15.6	33
2	Optical amplification from high vibrational states of ionized nitrogen molecules generated by 800-nm femtosecond laser pulses. Optics Express, 2021, 29, 2279.	1.7	O
3	Ultrafast extreme ultraviolet photoemission electron microscope. Review of Scientific Instruments, 2021, 92, 043709.	0.6	10
4	Probing the Spin-Orbit Time Delay of Multiphoton Ionization of Kr by Bicircular Fields. Physical Review Letters, 2021, 126, 223001.	2.9	14
5	Photon retention in coherently excited nitrogen ions. Science Bulletin, 2021, 66, 1511-1517.	4.3	12
6	Formation Mechanism of Excited Neutral Nitrogen Molecules Pumped by Intense Femtosecond Laser Pulses. Journal of Physical Chemistry Letters, 2020, 11, 7702-7708.	2.1	7
7	Doubly excited electron-ion angular momentum transfer in parity-unfavored multiphoton ionization. Physical Review A, 2020, 101, .	1.0	5
8	Ramsey interferometry through coherent <i>A</i> <ci>A<csup><c sup=""><ci>B<ci>B<csup><coupling <i="" and="" in="" population="" transfer="">N<csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup><csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></csup></coupling></csup></ci></ci></c></csup></ci>	>> 4i7Î £ <td>><b·u< i="">+</b·u<></td>	> <b·u< i="">+</b·u<>
9	Enhanced Coherent Emission from Ionized Nitrogen Molecules by Femtosecond Laser Pulses. Journal of Physical Chemistry Letters, 2019, 10, 6598-6603.	2.1	14
10	Electronic-coherence-mediated molecular nitrogen-ion lasing in a strong laser field. Physical Review A, 2019, 100, .	1.0	28
11	Nonresonant multiphoton ionization of xenon atoms by femtosecond laser pulses. Chemical Physics, 2019, 523, 52-56.	0.9	11
12	Quantum effect of laser-induced rescattering from the tunneling barrier. Physical Review A, 2019, 99, .	1.0	3
13	Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses. Optics Express, 2019, 27, 12638.	1.7	33
14	Subfemtosecond-resolved modulation of superfluorescence from ionized nitrogen molecules by 800-nm femtosecond laser pulses. Optics Express, 2019, 27, 14922.	1.7	24
15	Electronic quantum coherence in N 2 + air lasing. , 2019, , .		0
16	Energy- and Momentum-Resolved Photoelectron Spin Polarization in Multiphoton Ionization of Xe by Circularly Polarized Fields. Physical Review Letters, 2018, 120, 043201.	2.9	50
17	Optimizing the 391-nm lasing intensity from ionized nitrogen molecules in 800-nm femtosecond laser fields. Physical Review A, 2018, 97, .	1.0	23
18	Stimulated-Raman-scattering-assisted superfluorescence enhancement from ionized nitrogen molecules in 800-nm femtosecond laser fields. Physical Review A, 2018, 98, .	1.0	12

#	Article	lF	Citations
19	Resonance-Enhanced Harmonics From Air Plasma In The Perturbative Regime. , 2018, , .		О
20	The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 145101.	0.6	19
21	Fully differential study on dissociative ionization dynamics of deuteron molecules in strong elliptical laser fields. Physical Review A, 2017, 95, .	1.0	6
22	Phase-space perspective on the wavelength-dependent electron correlation of strong-field double ionization of Xe. Journal of Optics (United Kingdom), 2017, 19, 124004.	1.0	4
23	Experimental verification of the nonadiabatic effect in strong-field ionization with elliptical polarization. Physical Review A, 2017, 95, .	1.0	43
24	Revealing the Sub-Barrier Phase using a Spatiotemporal Interferometer with Orthogonal Two-Color Laser Fields of Comparable Intensity. Physical Review Letters, 2017, 119, 073201.	2.9	56
25	Vibrational and electronic excitation of ionized nitrogen molecules in intense laser fields. Physical Review A, 2017, 96, .	1.0	39
26	Population inversion in the rotational levels of the superradiant $N_2 + pumped$ by femtosecond laser pulses. Optics Express, 2017, 25, 4535.	1.7	35
27	Dissociative Ionization of Argon Dimer by Intense Femtosecond Laser Pulses. Journal of Physical Chemistry A, 2017, 121, 3891-3897.	1.1	9
28	Coulomb explosion of molecules driven by femtosecond laser pulses. Scientia Sinica: Physica, Mechanica Et Astronomica, 2017, 47, 033004.	0.2	0
29	Three-body fragmentation dynamics of carbon-dioxide dimers induced by intense femtosecond laser pulses. Chemical Physics Letters, 2016, 653, 108-111.	1.2	4
30	Vibrationally resolved electron-nuclear energy sharing in above-threshold multiphoton dissociation of CO. Physical Review A, $2016, 94, .$	1.0	17
31	Phase Structure of Strong-Field Tunneling Wave Packets from Molecules. Physical Review Letters, 2016, 116, 163004.	2.9	61
32	Population Redistribution Among Multiple Electronic States of Molecular Nitrogen Ions in Strong Laser Fields. Physical Review Letters, 2016, 116, 143007.	2.9	132
33	Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics. Scientific Reports, 2016, 6, 27108.	1.6	16
34	Isolating resonant excitation from above-threshold ionization. Physical Review A, 2015, 92, .	1.0	25
35	Population dynamics of molecular nitrogen initiated by intense femtosecond laser pulses. Physical Review A, 2015, 92, .	1.0	19
36	Dynamical coupling of electrons and nuclei for Coulomb explosion of argon trimers in intense laser fields. Physical Review A, 2015, 92, .	1.0	11

#	Article	IF	Citations
37	Three-body fragmentation of CO2 driven by intense laser pulses. Journal of Chemical Physics, 2015, 142, 124303.	1.2	19
38	Structural determination of argon trimer. AIP Advances, 2015, 5, 097213.	0.6	2
39	Long Range Ionic Potential Effect on Strong-Field Tunneling. , 2015, , 1-23.		О
40	Revealing backward rescattering photoelectron interference of molecules in strong infrared laser fields. Scientific Reports, 2015, 5, 8519.	1.6	30
41	Structure Tomography of Argon Trimer with Laser-Driven Coulomb Explosion Imaging. , 2015, , .		0
42	Imaging the structure of van der Waals Complexes with Laser-driven Coulomb Explosion. , 2014, , .		0
43	Communication: Determining the structure of the N2Ar van der Waals complex with laser-based channel-selected Coulomb explosion. Journal of Chemical Physics, 2014, 140, 141101.	1.2	29
44	Publisher's Note: Mechanisms of Strong-Field Double Ionization of Xe [Phys. Rev. Lett.113, 103001 (2014)]. Physical Review Letters, 2014, 113, .	2.9	0
45	Strong-Field Double Ionization through Sequential Release from Double Excitation with Subsequent Coulomb Scattering. Physical Review Letters, 2014, 112, 013003.	2.9	55
46	Publisher's Note: Rescattering and frustrated tunneling ionization of atoms in circularly polarized laser fields [Phys. Rev. A 89 , 013422 (2014)]. Physical Review A, 2014, 89, .	1.0	1
47	Publisher's Note: Subcycle Dynamics of Coulomb Asymmetry in Strong Elliptical Laser Fields [Phys. Rev. Lett. 111, 023006 (2013)]. Physical Review Letters, 2014, 112, .	2.9	1
48	Mechanisms of Strong-Field Double Ionization of Xe. Physical Review Letters, 2014, 113, 103001.	2.9	34
49	Identifying isomers of carbon-dioxide clusters by laser-driven Coulomb explosion. Physical Review A, 2014, 90, .	1.0	10
50	Classical-Quantum Correspondence for Above-Threshold Ionization. Physical Review Letters, 2014, 112, 113002.	2.9	169
51	Rescattering and frustrated tunneling ionization of atoms in circularly polarized laser fields. Physical Review A, 2014, 89, .	1.0	22
52	Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules. Physical Review A, 2014, 90, .	1.0	14
53	Charge oscillation in multiphoton and tunneling ionization of rare-gas dimers. Physical Review A, 2014, 89, .	1.0	5
54	Subcycle Dynamics of Coulomb Asymmetry in Strong Elliptical Laser Fields. Physical Review Letters, 2013, 111, 023006.	2.9	79

#	Article	IF	CITATIONS
55	Fluorescence emission from excited molecular ions in intense femtosecond laser fields. Frontiers of Physics, 2013, 8, 34-38.	2.4	7
56	Publisher's Note: Molecular-frame photoelectron angular distributions of strong-field tunneling from inner orbitals [Phys. Rev. A 88 , 061401(R) (2013)]. Physical Review A, 2013, 88, .	1.0	1
57	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mmultiscripts><mml:mi>CO</mml:mi><mml:mn>2</mml:mn><mml:none /><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:none </mml:mmultiscripts> ir	2.9	91
58	Intense Laser Fields. Physical Review Letters, 2013, 110, 103601. Tunneling electron recaptured by an atomic ion or a molecular ion. Physical Review A, 2013, 88, .	1.0	13
59	Molecular-frame photoelectron angular distributions of strong-field tunneling from inner orbitals. Physical Review A, 2013, 88, .	1.0	25
60	Coincidence imaging of photoelectrons and photo-ions of molecules in strong laser fields. Journal of Modern Optics, 2013, 60, 1388-1394.	0.6	6
61	Low Yield of Near-Zero-Momentum Electrons and Partial Atomic Stabilization in Strong-Field Tunneling Ionization. Physical Review Letters, 2012, 109, 093001.	2.9	89
62	Dissociative double ionization of CO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> induced by intense femtosecond laser pulses. Physical Review A, 2012, 85, .	1.0	8
63	Photoelectron angular distributions of low-order above-threshold ionization of Xe in the multiphoton regime. Physical Review A, 2012, 85, .	1.0	27
64	Characteristic Spectrum of Very Low-Energy Photoelectron from Above-Threshold Ionization in the Tunneling Regime. Physical Review Letters, 2012, 109, 043001.	2.9	119
65	Low-Energy Photoelectron Angular Distributions of Above-Threshold Ionization of Atoms and Molecules in Strong Laser Fields. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 195-200.	1.9	3
66	Steering of Molecular Multiple Dissociative Ionization with Strong Few-Cycle Laser Fields. Springer Proceedings in Physics, 2012, , 269-275.	0.1	0
67	Coulomb explosion of nitrogen and oxygen molecules through non-Coulombic states. Physical Chemistry Chemical Physics, 2011, 13, 18398.	1.3	36
68	Selective Steering of Molecular Multiple Dissociative Channels with Strong Few-Cycle Laser Pulses. Physical Review Letters, 2011, 106, 073004.	2.9	74
69	Fully differential measurement on above-threshold ionization of CO and CO_2 molecules in strong laser fields. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 293.	0.9	5
70	FIELD-FREE MOLECULAR ALIGNMENT BY TWO FEMOSECOND LASER PULSES. Advances in Multi-photon Processes and Spectroscopy, 2011, , 53-100.	0.6	1
71	Differential study on molecular suppressed ionization in intense linearly and circularly polarized laser fields. Physical Review A, 2011, 84, .	1.0	9
72	Recollision-induced dissociation and ionization of oxygen in few-cycle laser fields. Physical Review A, 2011, 83, .	1.0	11

#	Article	IF	CITATIONS
73	Tunneling ionization of carbon dioxide from lower-lying orbitals. Physical Review A, 2011, 83, .	1.0	34
74	Application of femtosecond laser mass spectrometry to the analysis of volatile organic compounds. Journal of the American Society for Mass Spectrometry, 2010, 21, 1122-1128.	1.2	6
75	Double Ionization of Nitrogen from Multiple Orbitals. Journal of Physical Chemistry A, 2010, 114, 6751-6756.	1.1	30
76	Alignment structures of rotational wavepacket created by two strong femtosecond laser pulses. Optics Express, 2010, 18, 8990.	1.7	15
77	Multiple ionization of oxygen studied by coincident measurement. Optics Express, 2010, 18, 10395.	1.7	10
78	Field-assisted bond stretching of CO in intense laser fields. Physical Review A, 2009, 79, .	1.0	10
79	Controlling molecular rotational population by wave-packet interference. Journal of Chemical Physics, 2009, 130, 231102.	1.2	26
80	Rotational wave packet of N2O created by two strong femtosecond laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 165508.	0.6	7
81	Mass spectra of ethylene in intense laser fields. Chemical Physics, 2009, 360, 13-17.	0.9	5
82	Molecular dynamics of CO in few-cycle laser fields. International Journal of Mass Spectrometry, 2009, 286, 28-31.	0.7	9
83	Mass spectra of methyl acetate and ethyl formate. Chemical Physics Letters, 2009, 468, 153-157.	1.2	6
84	Field-free molecular alignment and its application. Laser Physics, 2009, 19, 1691-1696.	0.6	13
85	Molecular Rotational Excitation by Strong Femtosecond Laser Pulses. Journal of Physical Chemistry A, 2009, 113, 10610-10618.	1.1	17
86	Manipulating molecular rotational wave packets with strong femtosecond laser pulses. Physical Review A, 2008, 77, .	1.0	26
87	Measurement of the Field-Free Alignment of Diatomic Molecules. Journal of Physical Chemistry A, 2008, 112, 612-617.	1.1	20
88	Decay Pathways of Pyrimidine Bases: From Gas Phase to Solution. Challenges and Advances in Computational Chemistry and Physics, 2008, , 301-321.	0.6	0
89	Manipulation of molecular rotational wave-packet. , 2008, , .		0
90	Ionization and dissociation of alkanes in few-cycle laser fields. Physical Review A, 2007, 75, .	1.0	22

#	Article	IF	Citations
91	Fragmentation dynamics of methane by few-cycle femtosecond laser pulses. Journal of Chemical Physics, 2007, 126, 074311.	1.2	35
92	Field-Induced Alignment of Oxygen and Nitrogen by Intense Femtosecond Laser Pulses. Journal of Physical Chemistry A, 2006, 110, 10179-10184.	1.1	23
93	Field-free alignment of molecules at room temperature. Optics Express, 2006, 14, 4992.	1.7	31
94	Dynamic alignment of C2H4 investigated by using two linearly polarized femtosecond laser pulses. Journal of the American Society for Mass Spectrometry, 2006, 17, 1717-1724.	1.2	6
95	Dynamic alignment of O2investigated by using two linearly polarized femtosecond laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 1035-1043.	0.6	5
96	Conformational identification of tryptamine embedded in superfluid helium droplets using electronic polarization spectroscopy. Journal of Chemical Physics, 2006, 125, 024305.	1.2	13
97	Cation vibrational energy levels of 1,3-benzodioxole obtained via zero kinetic energy photoelectron spectroscopy. Chemical Physics Letters, 2005, 402, 212-216.	1.2	4
98	Double ionization of C2H4 and C2H6 molecules irradiated by an intense femtosecond laser field. Chemical Physics Letters, 2005, 404, 370-373.	1.2	4
99	Dynamic alignment of CO in an intense femtosecond laser field. Chemical Physics Letters, 2005, 406, 116-120.	1.2	8
100	Geometric alignment of CH3I in an intense femtosecond laser field. Chemical Physics Letters, 2005, 415, 58-63.	1.2	14
101	A Theoretical and Experimental Study of Water Complexes ofm-Aminobenzoic Acid MABA·(H2O)n(n= 1) Tj ETQ	q1 _{1.1} 0.784	1314 rgBT /C
102	Structure of Gas Phase Radical Cation of 1,3,6,8-Tetraazatricyclo [4.4.1.13,8] Dodecane Determined from Zero Kinetic Energy Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 959-961.	1.1	3
103	Theoretical and Experimental Studies of Water Complexes ofp- ando-Aminobenzoic Acid. Journal of Physical Chemistry A, 2005, 109, 2809-2815.	1.1	28
104	Resonantly enhanced two photon ionization and zero kinetic energy spectroscopy of jet-cooled 4-aminopyridine. Journal of Chemical Physics, 2004, 120, 7497-7504.	1.2	25
105	Polarization spectroscopy of gaseous tropolone in a strong electric field. Journal of Chemical Physics, 2004, 121, 4577-4584.	1.2	8
106	Zero kinetic energy photoelectron spectroscopy of p-amino benzoic acid. Journal of Chemical Physics, 2004, 121, 3533-3539.	1.2	23
107	Two-color two-photon REMPI and ZEKE photoelectron spectroscopy of jet-cooled 2-chloropyrimidine. Chemical Physics Letters, 2004, 391, 38-43.	1.2	16
108	Two-color two-photon REMPI and ZEKE spectroscopy of supersonically cooled o-aminobenzoic acid. Chemical Physics Letters, 2004, 398, 351-356.	1.2	26

#	Article	IF	CITATIONS
109	Photophysics of Methyl-Substituted Uracils and Thymines and Their Water Complexes in the Gas Phase. Journal of Physical Chemistry A, 2004, 108, 943-949.	1.1	115
110	Observation of rotamers of m-aminobenzoic acid: Zero kinetic energy photoelectron and hole-burning resonantly enhanced multiphoton ionization spectroscopy. Journal of Chemical Physics, 2004, 121, 8321.	1.2	20
111	Two-photon polymerization of gratings by interference of a femtosecond laser pulse. Chemical Physics Letters, 2003, 374, 381-384.	1.2	11
112	Field induced ionization and Coulomb explosion of carbon disulfide. Optics Communications, 2003, 216, 133-138.	1.0	4
113	Decay Pathways of Thymine and Methyl-Substituted Uracil and Thymine in the Gas Phase. Journal of Physical Chemistry A, 2003, 107, 5145-5148.	1.1	110
114	Laser-induced dissociation and explosion of methane and methanol. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 2575-2582.	0.6	23
115	Mass and photoelectron spectrometer for studying field-induced ionization of molecules. International Journal of Mass Spectrometry, 2002, 216, 249-255.	0.7	20
116	Field ionization and Coulomb explosion of methanol in an intense field of a femtosecond laser beam. International Journal of Mass Spectrometry, 2002, 219, 305-313.	0.7	12
117	Field Ionization of Aliphatic Ketones by Intense Femtosecond Laser. Journal of Physical Chemistry A, 2001, 105, 374-377.	1.1	28
118	Ionization and dissociation of acetonitrile by intense femtosecond laser pulse. Science Bulletin, 2000, 45, 1953-1955.	1.7	8