Pai Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3510888/publications.pdf

Version: 2024-02-01

109137 114278 4,421 100 35 63 h-index citations g-index papers 104 104 104 2367 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 2018, 13, 137-150.	2.5	588
2	A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufacturing, 2020, 31, 1313-1337.	4.4	346
3	A systematic design approach for service innovation of smart product-service systems. Journal of Cleaner Production, 2018, 201, 657-667.	4.6	287
4	A survey of smart product-service systems: Key aspects, challenges and future perspectives. Advanced Engineering Informatics, 2019, 42, 100973.	4.0	234
5	A novel data-driven graph-based requirement elicitation framework in the smart product-service system context. Advanced Engineering Informatics, 2019, 42, 100983.	4.0	101
6	Toward human-centric smart manufacturing: A human-cyber-physical systems (HCPS) perspective. Journal of Manufacturing Systems, 2022, 63, 471-490.	7.6	100
7	A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment. Robotics and Computer-Integrated Manufacturing, 2020, 64, 101958.	6.1	93
8	Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach. Journal of Manufacturing Systems, 2021, 61, 16-26.	7.6	92
9	Analysis and prediction of printable bridge length in fused deposition modelling based on back propagation neural network. Virtual and Physical Prototyping, 2019, 14, 253-266.	5.3	91
10	Edge-cloud orchestration driven industrial smart product-service systems solution design based on CPS and IIoT. Advanced Engineering Informatics, 2019, 42, 100984.	4.0	89
11	Towards proactive human–robot collaboration: A foreseeable cognitive manufacturing paradigm. Journal of Manufacturing Systems, 2021, 60, 547-552.	7.6	87
12	Towards an automatic engineering change management in smart product-service systems – A DSM-based learning approach. Advanced Engineering Informatics, 2019, 39, 203-213.	4.0	86
13	A smart surface inspection system using faster R-CNN in cloud-edge computing environment. Advanced Engineering Informatics, 2020, 43, 101037.	4.0	84
14	Personalized product configuration framework in an adaptable open architecture product platform. Journal of Manufacturing Systems, 2017, 43, 422-435.	7.6	81
15	Smart, connected open architecture product: an IT-driven co-creation paradigm with lifecycle personalization concerns. International Journal of Production Research, 2019, 57, 2571-2584.	4.9	81
16	A digital twin-enhanced system for engineering product family design and optimization. Journal of Manufacturing Systems, 2020, 57, 82-93.	7.6	81
17	A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment. Journal of Intelligent Manufacturing, 2020, 31, 3-18.	4.4	78
18	A data-driven reversible framework for achieving Sustainable Smart product-service systems. Journal of Cleaner Production, 2021, 279, 123618.	4.6	77

#	Article	IF	CITATIONS
19	AR-assisted digital twin-enabled robot collaborative manufacturing system with human-in-the-loop. Robotics and Computer-Integrated Manufacturing, 2022, 76, 102321.	6.1	76
20	A Knowledge Graph-Aided Concept–Knowledge Approach for Evolutionary Smart Product–Service System Development. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .	1.7	72
21	Vision-based holistic scene understanding towards proactive human–robot collaboration. Robotics and Computer-Integrated Manufacturing, 2022, 75, 102304.	6.1	69
22	Exploiting knowledge graphs in industrial products and services: A survey of key aspects, challenges, and future perspectives. Computers in Industry, 2021, 129, 103449.	5.7	67
23	A weighted interval rough number based method to determine relative importance ratings of customer requirements in QFD product planning. Journal of Intelligent Manufacturing, 2019, 30, 3-16.	4.4	60
24	An AR-Assisted Deep Learning-Based Approach for Automatic Inspection of Aviation Connectors. IEEE Transactions on Industrial Informatics, 2021, 17, 1721-1731.	7.2	55
25	A user-centric design approach for smart product-service systems using virtual reality: A case study. Journal of Cleaner Production, 2021, 280, 124413.	4.6	53
26	A graph-based context-aware requirement elicitation approach in smart product-service systems. International Journal of Production Research, 2021, 59, 635-651.	4.9	50
27	Toward cognitive predictive maintenance: A survey of graph-based approaches. Journal of Manufacturing Systems, 2022, 64, 107-120.	7.6	49
28	A context-aware diversity-oriented knowledge recommendation approach for smart engineering solution design. Knowledge-Based Systems, 2021, 215, 106739.	4.0	46
29	Design concept evaluation of smart product-service systems considering sustainability: An integrated method. Computers and Industrial Engineering, 2021, 159, 107485.	3.4	45
30	Smart additive manufacturing: Current artificial intelligence-enabled methods and future perspectives. Science China Technological Sciences, 2020, 63, 1600-1611.	2.0	45
31	Production planning for cloud-based additive manufacturingâ€"A computer vision-based approach. Robotics and Computer-Integrated Manufacturing, 2019, 58, 145-157.	6.1	43
32	Toward Proactive Human–Robot Collaborative Assembly: A Multimodal Transfer-Learning-Enabled Action Prediction Approach. IEEE Transactions on Industrial Electronics, 2022, 69, 8579-8588.	5. 2	42
33	Adaptive reconstruction of digital twins for machining systems: A transfer learning approach. Robotics and Computer-Integrated Manufacturing, 2022, 78, 102390.	6.1	40
34	A Knowledge Management System to Support Design for Additive Manufacturing Using Bayesian Networks. Journal of Mechanical Design, Transactions of the ASME, 2018, 140, .	1.7	38
35	A holistic relook at engineering design methodologies for smart product-service systems development. Journal of Cleaner Production, 2020, 272, 122737.	4.6	38
36	User-experience Based Product Development for Mass Personalization: A Case Study. Procedia CIRP, 2017, 63, 2-7.	1.0	36

#	Article	IF	CITATIONS
37	Digitalisation and servitisation of machine tools in the era of Industry 4.0: a review. International Journal of Production Research, 2023, 61, 4069-4101.	4.9	36
38	Design entropy theory: A new design methodology for smart PSS development. Advanced Engineering Informatics, 2020, 45, 101124.	4.0	35
39	A visual reasoning-based approach for mutual-cognitive human-robot collaboration. CIRP Annals - Manufacturing Technology, 2022, 71, 377-380.	1.7	35
40	A system framework for OKP product planning in a cloud-based design environment. Robotics and Computer-Integrated Manufacturing, 2017, 45, 73-85.	6.1	33
41	A context-aware concept evaluation approach based on user experiences for smart product-service systems design iteration. Advanced Engineering Informatics, 2021, 50, 101394.	4.0	33
42	A weighted rough set based fuzzy axiomatic design approach for the selection of AM processes. International Journal of Advanced Manufacturing Technology, 2017, 91, 1977-1990.	1.5	32
43	Development of an edge computing-based cyber-physical machine tool. Robotics and Computer-Integrated Manufacturing, 2021, 67, 102042.	6.1	32
44	Ontology-based information modeling method for digital twin creation of as-fabricated machining parts. Robotics and Computer-Integrated Manufacturing, 2021, 72, 102173.	6.1	31
45	An integrated framework for active discovery and optimal allocation of smart manufacturing services. Journal of Cleaner Production, 2020, 273, 123144.	4.6	30
46	Smart Product-Service Systems Solution Design via Hybrid Crowd Sensing Approach. IEEE Access, 2019, 7, 128463-128473.	2.6	29
47	A hypergraph-based approach for context-aware smart product-service system configuration. Computers and Industrial Engineering, 2022, 163, 107816.	3.4	26
48	Promoting employee health in smart office: A survey. Advanced Engineering Informatics, 2022, 51, 101518.	4.0	26
49	A digital twin-based multidisciplinary collaborative design approach for complex engineering product development. Advanced Engineering Informatics, 2022, 52, 101635.	4.0	26
50	Industrial smart product-service systems solution design via hybrid concerns. Procedia CIRP, 2019, 83, 187-192.	1.0	25
51	Establishing a reliable mechanism model of the digital twin machining system: An adaptive evaluation network approach. Journal of Manufacturing Systems, 2022, 62, 390-401.	7.6	25
52	A machine learning-based iterative design approach to automate user satisfaction degree prediction in smart product-service system. Computers and Industrial Engineering, 2022, 165, 107939.	3.4	24
53	A novel hypergraph convolution network-based approach for predicting the material removal rate in chemical mechanical planarization. Journal of Intelligent Manufacturing, 2022, 33, 2295-2306.	4.4	21
54	Achieving Cognitive Mass Personalization via the Self-X Cognitive Manufacturing Network: An Industrial Knowledge Graph- and Graph Embedding-Enabled Pathway. Engineering, 2023, 22, 14-19.	3.2	20

#	Article	IF	Citations
55	Multi-modal transportation planning for multi-commodity rebalancing under uncertainty in humanitarian logistics. Advanced Engineering Informatics, 2021, 47, 101223.	4.0	19
56	Transfer Learning-enabled Action Recognition for Human-robot Collaborative Assembly. Procedia CIRP, 2021, 104, 1795-1800.	1.0	19
57	A graph-based reinforcement learning-enabled approach for adaptive human-robot collaborative assembly operations. Journal of Manufacturing Systems, 2022, 63, 491-503.	7.6	19
58	3D Printing in the Context of Cloud Manufacturing. Robotics and Computer-Integrated Manufacturing, 2022, 74, 102256.	6.1	18
59	From Open CNC Systems to Cyber-Physical Machine Tools: A Case Study. Procedia CIRP, 2018, 72, 1270-1276.	1.0	17
60	Cloud-based approach for smart product personalization. Procedia CIRP, 2018, 72, 922-927.	1.0	15
61	Microstructure Evolution Modeling and Simulation for Dynamic Recrystallization of Cr12MoV Die Steel During Hot Compression Based on Real Metallographic Image. Metals and Materials International, 2019, 25, 966-981.	1.8	15
62	VR-based Product Personalization Process for Smart Products. Procedia Manufacturing, 2017, 11, 1568-1576.	1.9	14
63	Performance Evaluation of a Foot Interface to Operate a Robot Arm. IEEE Robotics and Automation Letters, 2019, 4, 3302-3309.	3.3	14
64	Unstable approach in aviation: Mental model disconnects between pilots and air traffic controllers and interaction conflicts. Reliability Engineering and System Safety, 2019, 185, 383-391.	5.1	13
65	An explorative context-aware machine learning approach to reducing human fatigue risk of traffic control operators. Safety Science, 2020, 125, 104655.	2.6	12
66	Industrial smart productâ€service system development for lifecycle sustainability concerns. IET Collaborative Intelligent Manufacturing, 2020, 2, 197-201.	1.9	9
67	Dynamic Scene Graph for Mutual-Cognition Generation in Proactive Human-Robot Collaboration. Procedia CIRP, 2022, 107, 943-948.	1.0	9
68	Investigating the evolving context of an unstable approach in aviation from mental model disconnects with an agent-based model. Reliability Engineering and System Safety, 2020, 193, 106657.	5.1	8
69	Product family design and optimization: a digital twin-enhanced approach. Procedia CIRP, 2020, 93, 246-250.	1.0	8
70	Augmented Lagrangian coordination for energy-optimal allocation of smart manufacturing services. Robotics and Computer-Integrated Manufacturing, 2021, 71, 102161.	6.1	8
71	Perspectives of Genetic Damage and Epigenetic Alterations by Hexavalent Chromium: Time Evolution Based on a Bibliometric Analysis. Chemical Research in Toxicology, 2021, 34, 684-694.	1.7	7
72	Smart Product-Service Systems: A Novel Transdisciplinary Sociotechnical Paradigm. Advances in Transdisciplinary Engineering, 2019, , .	0.1	7

#	Article	IF	Citations
73	A node2vec-based graph embedding approach for unified assembly process information modeling and workstep execution time prediction. Computers and Industrial Engineering, 2022, 163, 107864.	3.4	6
74	An Explainable Laser Welding Defect Recognition Method Based on Multi-Scale Class Activation Mapping. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	6
75	Transfer Learning for Smart Manufacturing: A Stepwise Survey. IFAC-PapersOnLine, 2020, 53, 37-42.	0.5	5
76	An Adaptive Parallel Feature Learning and Hybrid Feature Fusion-Based Deep Learning Approach for Machining Condition Monitoring. IEEE Transactions on Cybernetics, 2023, 53, 7584-7595.	6.2	5
77	A weighted preference graph approach to analyze incomplete customer preference information in QFD product planning. , 2016, , .		4
78	Towards better information transparency in the air traffic landing system: A novel agent-based model with implicit interactions. Reliability Engineering and System Safety, 2019, 191, 106569.	5.1	4
79	A modularized generic product model in support of product family modeling in One-of-a-Kind Production. , 2014, , .		3
80	A Personalized Attribute Determination Process in a Cloud-Based Adaptable Product Configurator. , 2017, , .		3
81	A Closed-Loop Context-Aware Framework for Sustainable Smart PSS Development. , 2020, , .		3
82	Editorial Notes: Design innovation of Smart PSS. Advanced Engineering Informatics, 2020, 44, 101069.	4.0	3
83	A High-Resolution Network-Based Approach for 6D Pose Estimation of Industrial Parts. , 2021, , .		3
84	A Survey of Requirements Management in Smart Product-Service Systems. Advances in Transdisciplinary Engineering, 2019, , .	0.1	3
85	Integration of Conceptual Design and MOKA into CATIA v5: A Knowledge-Based Application for an Aircraft Y-Bolt Component. Applied Mechanics and Materials, 2012, 271-272, 974-980.	0.2	2
86	A rough set based fuzzy axiomatic design approach in evaluating customer-centric design alternatives. , 2015, , .		2
87	Integrate Product Planning Process of OKP Companies in the Cloud Manufacturing Environment. IFIP Advances in Information and Communication Technology, 2015, , 420-426.	0.5	2
88	Product-Service Family Enabled Product Configuration System for Cloud Manufacturing. , 2017, , .		2
89	A novel AHP-TOPSIS integrated method for case-based retrieval in mechanical product design. International Journal of Product Development, 2017, 22, 212.	0.2	2
90	Fundamentals of smart product-service system. , 2021, , 21-51.		1

#	Article	IF	Citations
91	Design Entropy Theory: A Novel Transdisciplinary Design Methodology for Smart PSS Development. Advances in Transdisciplinary Engineering, 2020, , .	0.1	1
92	Digital twin-enhanced product family design and optimization service. , 2022, , 89-118.		1
93	Graph-based context-aware product-service family configuration. , 2021, , 117-149.		0
94	Design entropy theory. , 2021, , 53-84.		0
95	New IT-driven value co-creation mechanism. , 2021, , 85-115.		0
96	Toward sustainable smart product-service systems. , 2021, , 203-227.		0
97	Digital twin-enhanced product family design and optimization. , 2021, , 151-179.		0
98	Evolvement of IT-driven product-service systems. , 2021, , 9-20.		0
99	Engineering lifecycle implementations of smart product-service system. , 2021, , 181-201.		0
100	Design of Data Collection and Analysis Method for a Pleasant and Safe User Experience of Personal Mobility Device. Advances in Transdisciplinary Engineering, 2019, , .	0.1	0