
David M Eisenmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3510727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell, 1989, 58, 1183-1191.	28.9	268
2	Wnt signaling. WormBook, 2005, , 1-17.	5.3	219
3	SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae Genes and Development, 1992, 6, 1319-1331.	5.9	217
4	Protruding Vulva Mutants Identify Novel Loci and Wnt Signaling Factors That Function During <i>Caenorhabditis elegans</i> Vulva Development. Genetics, 2000, 156, 1097-1116.	2.9	112
5	Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C. elegans vulval induction. Genes and Development, 2002, 16, 1281-1290.	5.9	107
6	Multiple redundant Wnt signaling components function in two processes during C. elegans vulval development. Developmental Biology, 2006, 298, 442-457.	2.0	103
7	Identification of <i>RTF1</i> , a Novel Gene Important for TATA Site Selection by TATA Box-Binding Protein in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1997, 17, 4490-4500.	2.3	67
8	The DivergentCaenorhabditis elegansβ-Catenin Proteins BAR-1, WRM-1 and HMP-2 Make Distinct Protein Interactions but Retain Functional Redundancyin Vivo. Genetics, 2001, 159, 159-172.	2.9	65
9	Wnt signaling controls the stem cell-like asymmetric division of the epithelial seam cells during C. elegans larval development. Developmental Biology, 2010, 348, 58-66.	2.0	61
10	Cell fates and fusion in the <i>C. elegans</i> vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors — apparent direct targets of the LIN-39 Hox protein. Development (Cambridge), 2002, 129, 5171-5180.	2.5	61
11	Signal transduction and cell fate specification during Caenorhabditis elegans vulval development. Current Opinion in Genetics and Development, 1994, 4, 508-516.	3.3	57
12	Mechanism of Activation of the <i>Caenorhabditis elegans ras</i> Homologue <i>let-60</i> by a Novel, Temperature-Sensitive, Gain-of-Function Mutation. Genetics, 1997, 146, 553-565.	2.9	53
13	A Caenorhabditis elegans tissue model of radiation-induced reproductive cell death. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9946-9951.	7.1	43
14	Transcriptional upregulation of the C. elegans Hox gene lin-39 during vulval cell fate specification. Mechanisms of Development, 2006, 123, 135-150.	1.7	42
15	<i>C. elegans</i> GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells. Development (Cambridge), 2013, 140, 2093-2102.	2.5	40
16	Use of an Activated Beta-Catenin to Identify Wnt Pathway Target Genes in <i>Caenorhabditis elegans</i> , Including a Subset of Collagen Genes Expressed in Late Larval Development. G3: Genes, Genomes, Genetics, 2014, 4, 733-747.	1.8	39
17	Identification of cis-regulatory elements from the C. elegans Hox gene lin-39 required for embryonic expression and for regulation by the transcription factors LIN-1, LIN-31 and LIN-39. Developmental Biology, 2006, 297, 550-565.	2.0	38
18	Â-Catenin-Dependent Wnt Signaling in C. elegans: Teaching an Old Dog a New Trick. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007948-a007948.	5.5	32

#	Article	IF	CITATIONS
19	Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors apparent direct targets of the LIN-39 Hox protein. Development (Cambridge), 2002, 129, 5171-80.	2.5	27
20	A Conserved RAS/Mitogen-Activated Protein Kinase Pathway Regulates DNA Damage–Induced Cell Death Postirradiation in Radelegans. Cancer Research, 2006, 66, 10434-10438.	0.9	24
21	Identification of evolutionarily conserved promoter elements and amino acids required for function of the C. elegans Î ² -catenin homolog BAR-1. Developmental Biology, 2004, 272, 536-557.	2.0	21
22	Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2015, 5, 1551-1566.	1.8	18
23	The Paired-box protein PAX-3 regulates the choice between lateral and ventral epidermal cell fates in C. elegans. Developmental Biology, 2016, 412, 191-207.	2.0	11
24	The Caenorhabditis elegans pvl-5 Gene Protects Hypodermal Cells From ced-3-Dependent, ced-4-Independent Cell Death. Genetics, 2004, 167, 673-685.	2.9	10
25	Regulation of <i>C. elegans</i> L4 cuticle collagen genes by the heterochronic protein LINâ€⊋9. Genesis, 2018, 56, .	1.6	10
26	New Roles for the Heterochronic Transcription Factor LIN-29 in Cuticle Maintenance and Lipid Metabolism at the Larval-to-Adult Transition in <i>Caenorhabditis elegans</i> . Genetics, 2020, 214, 669-690.	2.9	7
27	Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6. BMC Developmental Biology, 2014, 14, 17.	2.1	5
28	<i>C. elegans</i> seam cells as stem cells: Wnt signaling and casein kinase lα regulate asymmetric cell divisions in an epidermal progenitor cell type. Cell Cycle, 2011, 10, 23-22.	2.6	3
29	TheC. elegansembryonic fate specification factor EGL-18 (GATA) is reutilized downstream of Wnt signaling to maintain a population of larval progenitor cells. Worm, 2015, 4, e996419.	1.0	3