
Dirk Tourwé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3510509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure-Based Design of Melanocortin 4 Receptor Ligands Based on the SHU-9119-hMC4R Cocrystal Structure. Journal of Medicinal Chemistry, 2021, 64, 357-369.	6.4	12
2	Using conformational constraints at position 6 of Angiotensin II to generate compounds with enhanced AT2R selectivity and proteolytic stability. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128086.	2.2	1
3	Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Medicinal Chemistry, 2021, 12, 828-870.	3.9	16
4	Optimized Opioid-Neurotensin Multitarget Peptides: From Design to Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2020, 63, 12929-12941.	6.4	13
5	Neuromedin U and Structural Analogs: An Overview of their Structure, Function and Selectivity. Current Medicinal Chemistry, 2020, 27, 6744-6768.	2.4	7
6	Neurotensin Analogues Containing Cyclic Surrogates of Tyrosine at Position 11 Improve NTS2 Selectivity Leading to Analgesia without Hypotension and Hypothermia. ACS Chemical Neuroscience, 2019, 10, 4535-4544.	3.5	18
7	Trifluoromethylated Proline Surrogates as Part of "Pro–Pro―Turnâ€Inducing Templates. ChemBioChem, 2019, 20, 2513-2518.	2.6	13
8	Synthesis and <i>in Vitro</i> Evaluation of Stabilized and Selective Neuromedin U-1 Receptor Agonists. ACS Medicinal Chemistry Letters, 2018, 9, 496-501.	2.8	9
9	Indoloazepinoneâ€Constrained Oligomers as Cellâ€Penetrating and Blood–Brainâ€Barrierâ€Permeating Compounds. ChemBioChem, 2018, 19, 696-705.	2.6	8
10	Development of potent and proteolytically stable human neuromedin U receptor agonists. European Journal of Medicinal Chemistry, 2018, 144, 887-897.	5.5	13
11	Efficient One-Pot Access to Trisubstituted 2-Benzazepin-3-ones as Constrained Pseudopeptide Analogues and Privileged Scaffolds. Medicinal Chemistry, 2018, 14, 400-408.	1.5	0
12	Cyclisation To Form Small, Medium and Large Rings by Use of Catalysed and Uncatalysed Azide–Alkyne Cycloadditions (AACs). European Journal of Organic Chemistry, 2017, 2017, 4678-4694.	2.4	20
13	Analgesic Properties of Opioid/NK1 Multitarget Ligands with Distinct in Vitro Profiles in Naive and Chronic Constriction Injury Mice. ACS Chemical Neuroscience, 2017, 8, 2315-2324.	3.5	30
14	Hydrazone Linker as a Useful Tool for Preparing Chimeric Peptide/Nonpeptide Bifunctional Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 73-77.	2.8	25
15	χ-Space Screening of Dermorphin-Based Tetrapeptides through Use of Constrained Arylazepinone and Quinolinone Scaffolds. ACS Medicinal Chemistry Letters, 2017, 8, 1177-1182.	2.8	4
16	Bifunctional Peptide-Based Opioid Agonist–Nociceptin Antagonist Ligands for Dual Treatment of Acute and Neuropathic Pain. Journal of Medicinal Chemistry, 2016, 59, 3777-3792.	6.4	36
17	Side Chain Cyclized Aromatic Amino Acids: Great Tools as Local Constraints in Peptide and Peptidomimetic Design. Journal of Medicinal Chemistry, 2016, 59, 10865-10890.	6.4	35
18	Synthesis and binding characteristics of [3H]neuromedin N, a NTS2 receptor ligand. Neuropeptides, 2016, 57, 15-20.	2.2	3

Dirk Tourwé

#	Article	IF	CITATIONS
19	Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist – Neurokinin-1 antagonist peptidomimetics. European Journal of Medicinal Chemistry, 2015, 92, 64-77.	5.5	27
20	Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nature Structural and Molecular Biology, 2015, 22, 265-268.	8.2	151
21	Azepinone-Containing Tetrapeptide Analogues of Melanotropin Lead to Selective <i>h</i> MC4R Agonists and <i>h</i> MC5R Antagonist. ACS Medicinal Chemistry Letters, 2015, 6, 192-197.	2.8	13
22	Dual Alleviation of Acute and Neuropathic Pain by Fused Opioid Agonist-Neurokinin 1 Antagonist Peptidomimetics. ACS Medicinal Chemistry Letters, 2015, 6, 1209-1214.	2.8	20
23	T3P-Promoted, Mild, One-Pot Syntheses of Constrained Polycyclic Lactam Dipeptide Analogues via Stereoselective Pictet–Spengler and Meyers Lactamization Reactions. Organic Letters, 2015, 17, 4482-4485.	4.6	13
24	Neuropeptide FF receptors as novel targets for limbic seizure attenuation. Neuropharmacology, 2015, 95, 415-423.	4.1	4
25	Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 466-479.	1.7	11
26	In Vitro Membrane Permeation Studies and in Vivo Antinociception of Glycosylated Dmt ¹ -DALDA Analogues. ACS Medicinal Chemistry Letters, 2014, 5, 352-357.	2.8	11
27	Highly stereoselective one-pot construction of trisubstituted tetrahydro-β-carboline-fused diketopiperazines: a synthetic route towards cialis analogues. RSC Advances, 2014, 4, 38159-38163.	3.6	17
28	In vivo antinociception of potent mu opioid agonist tetrapeptide analogues and comparison with a compact opioid agonist - neurokinin 1 receptor antagonist chimera. Molecular Brain, 2012, 5, 4.	2.6	28
29	Maillard Glycation of Peptides Containing the (N αHis)Ac Chelator for 99mTc(CO)3 Labeling. International Journal of Peptide Research and Therapeutics, 2006, 12, 197-202.	1.9	8
30	Synthesis and Evaluation of the β-Turn Properties of 4-Amino-1,2,4,5-tetrahydro-2-benzazepin-3-ones and of Their Spirocyclic Derivative. European Journal of Organic Chemistry, 2006, 2006, 2899-2911.	2.4	21
31	Synthesis and binding properties of endomorphin-2 analogs containing α-hydroxymethyl amino acids. International Journal of Peptide Research and Therapeutics, 2000, 7, 93-96.	0.1	6
32	Title is missing!. International Journal of Peptide Research and Therapeutics, 1998, 5, 383-385.	0.1	1
33	Side reactions in the preparation of 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid. International Journal of Peptide Research and Therapeutics, 1998, 5, 121-123.	0.1	0
34	α-Bn-o-AMPA as a cis peptide bond mimic in somatostatin analogues. International Journal of Peptide Research and Therapeutics, 1998, 5, 67-70.	0.1	0
35	α-Bn-o-AMPA as a cis peptide bond mimic in somatostatin analogues. International Journal of Peptide Research and Therapeutics, 1998, 5, 67-70.	0.1	1
36	Side reactions in the preparation of 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid. International Journal of Peptide Research and Therapeutics, 1998, 5, 121-123.	0.1	1

#	Article	IF	CITATIONS
37	Biological consequences of the incorporation of amphiphilic amino acids into opioid peptide sequences. International Journal of Peptide Research and Therapeutics, 1998, 5, 383-385.	0.1	5
38	Conformation of two somatostatin analogues in aqueous solution. Study by NMR methods and circular dichroism. FEBS Journal, 1989, 185, 371-381.	0.2	16