List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3510357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomaterialia, 2011, 7, 2604-2614.	8.3	271
2	The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. Journal of Materials Science: Materials in Medicine, 2013, 24, 2381-2390.	3.6	176
3	Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements. Biomaterials, 2013, 34, 6589-6606.	11.4	132
4	Structure, Properties and Applications of Mussel-Inspired Polydopamine. Journal of Biomedical Nanotechnology, 2014, 10, 3063-3084.	1.1	126
5	Properties and immersion behavior of magnetron-sputtered multi-layered hydroxyapatite/titanium composite coatings. Biomaterials, 2003, 24, 4233-4238.	11.4	105
6	The Effect of Setting Accelerator on Properties of Mineral Trioxide Aggregate. Journal of Endodontics, 2008, 34, 590-593.	3.1	104
7	Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. Journal of Materials Chemistry, 2009, 19, 1183.	6.7	98
8	Calcium phosphate-based cements: clinical needs and recent progress. Journal of Materials Chemistry B, 2013, 1, 1081-1089.	5.8	97
9	Comparison of Calcium and Silicate Cement and Mineral Trioxide Aggregate Biologic Effects and Bone Markers Expression in MG63 Cells. Journal of Endodontics, 2009, 35, 682-685.	3.1	79
10	Electrochemical evaluation of avidin–biotin interaction on self-assembled gold electrodes. Electrochimica Acta, 2005, 50, 3660-3666.	5.2	71
11	Physicochemical Properties of Calcium Silicate Cements for Endodontic Treatment. Journal of Endodontics, 2009, 35, 1288-1291.	3.1	71
12	The Effect of a Physiologic Solution pH on Properties of White Mineral Trioxide Aggregate. Journal of Endodontics, 2009, 35, 98-101.	3.1	66
13	Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment. Materials, 2015, 8, 684-699.	2.9	66
14	Root canal sealers induce cytotoxicity and necrosis. Journal of Materials Science: Materials in Medicine, 2004, 15, 767-771.	3.6	63
15	Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate. , 1999, 44, 266-279.		62
16	A new method for detection of endotoxin on polymyxin B-immobilized gold electrodes. Electrochemistry Communications, 2007, 9, 1206-1211.	4.7	61
17	Immersion behavior of gelatin-containing calcium phosphate cement. Acta Biomaterialia, 2008, 4, 646-655.	8.3	61
18	In Vitro Bioactivity and Biocompatibility of Dicalcium Silicate Cements for Endodontic Use. Journal of Endodontics, 2009, 35, 1554-1557.	3.1	58

#	Article	IF	CITATIONS
19	The anticorrosion ability of titanium nitride (TiN) plating on an orthodontic metal bracket and its biocompatibility. Journal of Biomedical Materials Research Part B, 2002, 63, 786-792.	3.1	57
20	A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration. Journal of Materials Chemistry B, 2017, 5, 3084-3102.	5.8	56
21	Immersion behavior of RF magnetron-assisted sputtered hydroxyapatite/titanium coatings in simulated body fluid. , 1999, 47, 551-563.		53
22	Mechanical properties of collagen gels derived from rats of different ages. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1261-1275.	3.5	53
23	Comparative Physicochemical and Biocompatible Properties of Radiopaque Dicalcium Silicate Cement and Mineral Trioxide Aggregate. Journal of Endodontics, 2010, 36, 1683-1687.	3.1	52
24	Physicochemical properties and biocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements. Materials Chemistry and Physics, 2010, 120, 282-288.	4.0	50
25	Osteogenic Differentiation and Immune Response of Human Bone-Marrow-Derived Mesenchymal Stem Cells on Injectable Calcium-Silicate-Based Bone Grafts. Tissue Engineering - Part A, 2010, 16, 2343-2354.	3.1	50
26	Effects of mineral trioxide aggregate (MTA) extracts on mitogen-activated protein kinase activity in human osteosarcoma cell line (U2OS). Biomaterials, 2003, 24, 3909-3913.	11.4	48
27	Characterization of functionally graded hydroxyapatite/titanium composite coatings plasma-sprayed on Ti alloys. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 146-152.	3.4	46
28	Cytotoxicity of Orthodontic Wire Corroded in Fluoride Solution In Vitro. Angle Orthodontist, 2007, 77, 349-354.	2.4	45
29	Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate. Journal of Alloys and Compounds, 2014, 585, 25-31.	5.5	45
30	Properties of an Accelerated Mineral Trioxide Aggregate–like Root-end Filling Material. Journal of Endodontics, 2009, 35, 239-242.	3.1	44
31	Enhanced antibacterial activity of calcium silicate-based hybrid cements for bone repair. Materials Science and Engineering C, 2020, 110, 110727.	7.3	43
32	Properties of anti-washout-type calcium silicate bone cements containing gelatin. Journal of Materials Science: Materials in Medicine, 2010, 21, 1057-1068.	3.6	42
33	In Vitro Physicochemical Properties, Osteogenic Activity, and Immunocompatibility of Calcium Silicate–Gelatin Bone Grafts for Load-Bearing Applications. ACS Applied Materials & Interfaces, 2011, 3, 4142-4153.	8.0	42
34	Effects of Surface Conditions of Titanium Dental Implants on Bacterial Adhesion. Photomedicine and Laser Surgery, 2016, 34, 379-388.	2.0	42
35	Dopamine-induced silica–polydopamine hybrids with controllable morphology. Chemical Communications, 2014, 50, 3602.	4.1	41
36	Effectiveness of Hypochlorous Acid to Reduce the Biofilms on Titanium Alloy Surfaces in Vitro. International Journal of Molecular Sciences, 2016, 17, 1161.	4.1	41

#	Article	IF	CITATIONS
37	Biodegradation behavior of chitosan/calcium phosphate composites. Journal of Non-Crystalline Solids, 2007, 353, 2367-2373.	3.1	39
38	Metal ion release from new and recycled stainless steel brackets. European Journal of Orthodontics, 2004, 26, 171-177.	2.4	38
39	Effect of Er,Cr:YSGG Laser Parameters on Shear Bond Strength and Microstructure of Dentine. Photomedicine and Laser Surgery, 2009, 27, 481-486.	2.0	38
40	Green synthesis of calcium silicate bioceramic powders. Ceramics International, 2015, 41, 5445-5453.	4.8	37
41	Novel SiO ₂ /PDA hybrid coatings to promote osteoblast-like cell expression on titanium implants. Journal of Materials Chemistry B, 2015, 3, 2698-2707.	5.8	37
42	Antimicrobial efficacy of methylene blue-mediated photodynamic therapy on titanium alloy surfaces in vitro. Photodiagnosis and Photodynamic Therapy, 2019, 25, 7-16.	2.6	37
43	Effect of Heat Treatment on Characteristics of Plasma Sprayed Hydroxyapatite Coatings. Materials Transactions, 2006, 47, 935-940.	1.2	36
44	Controlled release of gentamicin from calcium phosphate/alginate bone cement. Materials Science and Engineering C, 2011, 31, 334-341.	7.3	36
45	Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection. Journal of Electroanalytical Chemistry, 2008, 619-620, 39-45.	3.8	35
46	Expression of the Inflammatory Marker Cyclooxygenase-2 in Dental Pulp Cells Cultured with Mineral Trioxide Aggregate or Calcium Silicate Cements. Journal of Endodontics, 2010, 36, 465-468.	3.1	34
47	Dual-functional bone implants with antibacterial ability and osteogenic activity. Journal of Materials Chemistry B, 2017, 5, 1943-1953.	5.8	33
48	The cytotoxicity of orthodontic metal bracket immersion media. European Journal of Orthodontics, 2007, 29, 198-203.	2.4	31
49	Stem cell differentiation-induced calcium silicate cement with bacteriostatic activity. Journal of Materials Chemistry B, 2015, 3, 570-580.	5.8	31
50	In vitro and in vivo osteogenesis of gelatin-modified calcium silicate cement with washout resistance. Materials Science and Engineering C, 2020, 117, 111297.	7.3	31
51	Preparation and Properties of Chitosan/Calcium Phosphate Composites for Bone Repair. Dental Materials Journal, 2006, 25, 706-712.	1.8	30
52	Comparative cell attachment, cytotoxicity and antibacterial activity of radiopaque dicalcium silicate cement and whiteâ€coloured mineral trioxide aggregate. International Endodontic Journal, 2015, 48, 268-276.	5.0	30
53	Fabrication of nanostructured copper phosphate electrodes for the detection of α-amino acids. Sensors and Actuators B: Chemical, 2015, 206, 584-591.	7.8	30
54	<i>In vitro</i> physiochemical properties of a biomimetic gelatin/chitosan oligosaccharide/calcium silicate cement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 456-465.	3.4	28

#	Article	lF	CITATIONS
55	Compositionâ€dependent protein secretion and integrin level of osteoblastic cell on calcium silicate cements. Journal of Biomedical Materials Research - Part A, 2014, 102, 769-780.	4.0	28
56	Effect of preoxidation of titanium on the titanium–ceramic bonding. Surface and Coatings Technology, 2007, 202, 288-293.	4.8	24
57	Evaluation of Human Osteosarcoma Cell Line Genotoxicity Effects of Mineral Trixoide Aggregate and Calcium Silicate Cements. Journal of Endodontics, 2010, 36, 1158-1162.	3.1	24
58	Improved physicochemical properties and biocompatibility of stainless steel implants by PVA/ZrO 2 -based composite coatings. Surface and Coatings Technology, 2014, 258, 374-380.	4.8	24
59	Enhanced properties of novel zirconia-based osteo-implant systems. Applied Materials Today, 2017, 9, 622-632.	4.3	24
60	Mechanical and optical properties evaluation of rapid sintered dental zirconia. Ceramics International, 2020, 46, 26668-26674.	4.8	24
61	Comparison of frictional resistance after immersion of metal brackets and orthodontic wires in a fluoride-containing prophylactic agent. American Journal of Orthodontics and Dentofacial Orthopedics, 2006, 130, 568.e1-568.e9.	1.7	23
62	Biocompatibility of various formula root filling materials for primary teeth. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 486-490.	3.4	23
63	Bio-inspired calcium silicate–gelatin bone grafts for load-bearing applications. Journal of Materials Chemistry, 2011, 21, 12793.	6.7	22
64	Effect of polydimethylsiloxane surfaces silanized with different nitrogen-containing groups on the adhesion progress of epithelial cells. Surface and Coatings Technology, 2011, 205, 3182-3189.	4.8	22
65	Metal ion-dependent tailored antibacterial activity and biological properties of polydopamine-coated titanium implants. Surface and Coatings Technology, 2019, 378, 124998.	4.8	22
66	In vitro degradation behavior of porous calcium phosphates under diametral compression loading. Ceramics International, 2005, 31, 691-696.	4.8	21
67	Comparative Osteogenesis of Radiopaque Dicalcium Silicate Cement and White-Colored Mineral Trioxide Aggregate in a Rabbit Femur Model. Materials, 2013, 6, 5675-5689.	2.9	21
68	Effects of Chronic Treatment with Diosgenin on Bone Loss in a D-Galactose-Induced Aging Rat Model. Chinese Journal of Physiology, 2014, 57, 121-127.	1.0	20
69	Rheology, crystallization behavior, and mechanical properties of poly(butylene) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 T 4.8	f 50182 Td (
70	Physicochemical properties and osteogenic activity of radiopaque calcium silicate–gelatin cements. Journal of Materials Science: Materials in Medicine, 2014, 25, 2193-2203.	3.6	18
71	Calcium silicate cements prepared by hydrothermal synthesis for bone repair. Ceramics International, 2016, 42, 9183-9189.	4.8	18
72	Preparation and properties of gold nanoparticle-electrodeposited titanium substrates with Arg-Gly-Asp-Cys peptides. Journal of Materials Science: Materials in Medicine, 2010, 21, 1511-1519.	3.6	17

#	Article	IF	CITATIONS
73	Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 366-383.	3.1	17
74	Calcium silicate layer on titanium fabricated by electrospray deposition. Materials Science and Engineering C, 2019, 98, 401-408.	7.3	17
75	Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources. Materials, 2016, 9, 25.	2.9	16
76	In vitro degradation and angiogenesis of the porous calcium silicate–gelatin composite scaffold. Journal of Materials Chemistry B, 2016, 4, 505-512.	5.8	15
77	Physicochemical properties of radiopaque dicalcium silicate cement as a rootâ€end filling material in an acidic environment. International Endodontic Journal, 2013, 46, 234-241.	5.0	14
78	<i>In vitro</i> comparisons of microscale and nanoscale calcium silicate particles. Journal of Materials Chemistry B, 2020, 8, 6034-6047.	5.8	14
79	Induction of cyclooxygenase-2 expression in human pulp cells stimulated by dentin bonding agents. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2005, 100, 501-506.	1.4	13
80	Oxygen Plasma Improved Shear Strength of Bonding between Zirconia and Composite Resin. Coatings, 2020, 10, 635.	2.6	12
81	Mechanical Biocompatibility, Osteogenic Activity, and Antibacterial Efficacy of Calcium Silicate–Zirconia Biocomposites. ACS Omega, 2021, 6, 7106-7118.	3.5	12
82	Electrosprayed calcium silicate nanoparticle-coated titanium implant with improved antibacterial activity and osteogenesis. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111699.	5.0	12
83	Biomechanical analysis of rigid and non-rigid connection with implant abutment designs for tooth-implant supported prosthesis: A finite element analysis. Journal of Dental Sciences, 2022, 17, 490-499.	2.5	11
84	Environmental effect on bond strength of magnetron-sputtered hydroxyapatite/titanium coatings. Journal of Materials Science Letters, 2003, 22, 479-482.	0.5	10
85	The Significance of Gelatin in Calcium Phosphate Hybrid Bone Cement for Attachment and Differentiation of MG63 Cells. Advanced Engineering Materials, 2011, 13, B246.	3.5	10
86	Enhancing osteoblast functions on biofilm-contaminated titanium alloy by concentration-dependent use of methylene blue-mediated antimicrobial photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2019, 27, 7-18.	2.6	10
87	Synergistic reinforcement of surface modification on improving the bonding of veneering ceramics to zirconia. Ceramics International, 2018, 44, 19665-19671.	4.8	8
88	Synergistic Photoantimicrobial Chemotherapy of Methylene Blue-Encapsulated Chitosan on Biofilm-Contaminated Titanium. Pharmaceuticals, 2021, 14, 346.	3.8	8
89	Impact Behavior of Three Notched All-Ceramic Restorations after Soaking in Artificial Saliva. Materials, 2015, 8, 4479-4490.	2.9	7
90	Dopant-dependent tailoring of physicochemical and biological properties of calcium silicate bone cements. Bio-Medical Materials and Engineering, 2018, 29, 773-785.	0.6	7

#	Article	IF	CITATIONS
91	Antibacterial ability and osteogenic activity of polyphenol-tailored calcium silicate bone cement. Journal of Materials Chemistry B, 2022, 10, 4640-4649.	5.8	6
92	Component effects of bioactive glass on corrosion resistance and in vitro biological properties of apatite-matrix coatings. Bio-Medical Materials and Engineering, 2019, 30, 207-218.	0.6	5
93	Bond strength of self-adhesive resin cements to a high transparency zirconia crown and dentin. Journal of Dental Sciences, 2022, 17, 973-983.	2.5	5
94	Effect of Conditioners on Bond Durability of Resin Composite to Nd:YAP Laser-irradiated Dentin. Dental Materials Journal, 2006, 25, 463-469.	1.8	4
95	Dentin Surface Modification Using the Er,Cr:YSGG Laser and a Meshwork Mask: Light and SEM Microscopic Observations. Photomedicine and Laser Surgery, 2011, 29, 433-435.	2.0	3
96	Clinical outcomes and complications of posterior three-unit porcelain-fused-to-metal restoration combined with tooth-implant-supported prosthesis: A meta-analysis. Journal of Dental Sciences, 2021, 17, 184-193.	2.5	3
97	Shear Bond Strength of Ceramic Veneers to Zirconia–Calcium Silicate Cores. Coatings, 2021, 11, 1326.	2.6	3
98	The research on the dental bridge model-making process based on the curing shrinkage epoxy and residual stress reduction. Journal of Mechanics, 2021, 37, 659-668.	1.4	2
99	Dissolved Oxygen-Sensing Chip Integrating an Open Container Connected with a Position-Raised Channel for Estimation of Cellular Mitochondrial Activity. ACS Sensors, 2022, 7, 1808-1818.	7.8	2
100	Biomechanical evaluation of bridge span with three implant abutment designs and two connectors for tooth-implant supported prosthesis: A finite element analysis. Journal of Dental Sciences, 2023, 18, 248-263.	2.5	1
101	Biostable Gradient Coating Implants with Drug Release. , 2008, , .		0
102	Experimental Pulp-Capping Agent Radiopaque Dicalcium Silicate Cement Facilitates Dentinogenesis. Frontiers in Materials, 2021, 8, .	2.4	0