
Jun-yi Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3509895/publications.pdf Version: 2024-02-01

LIN-VI XIANC

#	Article	IF	CITATIONS
1	A comprehensive experimental and first-principles study on magnesium-vanadium oxides. Journal of Alloys and Compounds, 2022, 896, 162862.	5.5	10
2	Phase Equilibrium of the V2O5–Na2O System. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 2695-2703.	2.1	1
3	Crystal structure, phase transitions, and thermodynamic properties of magnesium metavanadate (MgV2O6). Journal of Magnesium and Alloys, 2022, , .	11.9	3
4	Double pyrovanadates CaMgV ₂ O ₇ : Formation mechanism, phase structure, and thermodynamic properties. Journal of the American Ceramic Society, 2022, 105, 6359-6369.	3.8	2
5	Isothermal reduction of V2O5 powder using H2 as oxygen carrier: Thermodynamic evaluation, reaction sequence, and kinetic analysis. Powder Technology, 2021, 378, 785-794.	4.2	8
6	Solid-State Reaction and Diffusion Behaviors of CaFe2O4 and TiO2 at 1373 K to 1473 K. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 1436-1449.	2.1	5
7	Slag-foaming phenomenon originating from reaction of titanium-bearing blast furnace slag: Continuous monitoring of foaming height and calibration. Journal of Materials Research and Technology, 2021, 11, 1184-1192.	5.8	9
8	Application of response surface methodology for roasting optimization in composite roasting—Acid leaching vanadium extraction process. Chemical Engineering Research and Design, 2021, 172, 254-263.	5.6	18
9	Thermodynamic properties of magnesium orthovanadate Mg3(VO4)2Âat high temperatures (298.15–1473ÂK). Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102295.	1.6	7
10	Solid-state reaction of a CaO-V2O5 mixture: A fundamental study for the vanadium extraction process. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1462-1468.	4.9	16
11	Preparation of synthetic rutile from reduced ilmenite through the aeration leaching process. Chemical Engineering and Processing: Process Intensification, 2020, 147, 107774.	3.6	14
12	Thermodynamic properties of sodium pyrovanadate (Na4V2O7) at high temperature (298.15–873ÂK). Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 70, 101802.	1.6	16
13	Recovery of vanadium from vanadium slag by composite roasting with CaO/MgO and leaching. Transactions of Nonferrous Metals Society of China, 2020, 30, 3114-3123.	4.2	37
14	Effect of TiO2 on reduction behavior of Cr2O3 in CaO–SiO2–Al2O3–MgO–TiO2–Cr2O3 by carbon fro Fe–C melt. Journal of Iron and Steel Research International, 2020, 27, 1145-1152.	m 2.8	3
15	A clean process of preparing VO as LIBs anode materials via the reduction of V2O3 powder in a H2 atmosphere: Thermodynamic assessment, isothermal kinetic analysis, and electrochemistry performance evaluation. Journal of Alloys and Compounds, 2020, 845, 156305.	5.5	7
16	Slag-foaming phenomenon originating from reaction of titanium-bearing blast furnace slag: effects of TiO2 content and basicity. Canadian Metallurgical Quarterly, 2020, 59, 151-158.	1.2	10
17	Dissolution kinetics of calcium vanadates in sulfuric acid: a fundamental study for the vanadium extraction process. Journal of Chemical Technology and Biotechnology, 2020, 95, 1773-1780.	3.2	2
18	Preparation of Na4V2O7 Powder by Solid-State Reaction. Minerals, Metals and Materials Series, 2020, , 119-126.	0.4	0

Jun-yi Xiang

#	Article	IF	CITATIONS
19	How to Measure High-Temperature Heat Capacity Reliably by Drop Calorimetry. Minerals, Metals and Materials Series, 2020, , 573-580.	0.4	0
20	Generation of titania-rich slag and iron from ilmenite concentrate by carbothermic reduction and magnetic separation in the presence of Na2CO3. Canadian Metallurgical Quarterly, 2020, 59, 393-404.	1.2	6
21	Effect of preoxidation on the reduction of ilmenite concentrate powder by hydrogen. International Journal of Hydrogen Energy, 2019, 44, 4031-4040.	7.1	28
22	High-temperature heat capacity and phase transformation kinetics of NaVO3. Journal of Alloys and Compounds, 2019, 794, 465-472.	5.5	24
23	A Literature Review of Heat Capacity Measurement Methods. Minerals, Metals and Materials Series, 2019, , 569-577.	0.4	2
24	A Multi-step Process for the Cleaner Utilization of Vanadium-Bearing Converter Slag. Minerals, Metals and Materials Series, 2019, , 21-30.	0.4	1
25	The isothermal reduction kinetics of chromium-bearing vanadium–titanium magnetite sinter. Canadian Metallurgical Quarterly, 2019, 58, 177-186.	1.2	3
26	Non-isothermal kinetic studies on the carbothermic reduction of Panzhihua ilmenite concentrate. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2019, 128, 239-247.	0.2	3
27	Analysis of Microwave Drying Behavior of Nickel Laterite. Minerals, Metals and Materials Series, 2018, , 691-699.	0.4	0
28	Effects of Pre-oxidation on the Kinetics of Iron Leaching from Ilmenite in Hydrochloric Acid Solution. Minerals, Metals and Materials Series, 2018, , 301-307.	0.4	1
29	Extraction of vanadium from converter slag by two-step sulfuric acid leaching process. Journal of Cleaner Production, 2018, 170, 1089-1101.	9.3	105
30	Mineralogical characterisation and magnetic separation of vanadium-bearing converter slag. Waste Management and Research, 2018, 36, 1083-1091.	3.9	6
31	Carbothermic reduction of ilmenite concentrate in semi-molten state by adding sodium sulfate. Powder Technology, 2018, 340, 354-361.	4.2	39
32	Effect of karrooite on the gaseous reduction of pseudobrookite-karrooite powder under a CO-Ar atmosphere. Powder Technology, 2018, 340, 511-519.	4.2	4
33	Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment. Journal of Hazardous Materials, 2018, 357, 128-137.	12.4	32
34	Co-recovery of iron, chromium, and vanadium from vanadium tailings by semi-molten reduction–magnetic separation process. Canadian Metallurgical Quarterly, 2018, 57, 262-273.	1.2	13
35	Thermogravimetric Analysis and Kinetic Study of the Calcification Roasting of Vanadium Slag. Minerals, Metals and Materials Series, 2018, , 663-671.	0.4	1
36	Kinetic Study on the Leaching of Vanadium-Bearing Converter Slag with Dilute Sulfuric Acid. Minerals, Metals and Materials Series, 2017, , 547-556.	0.4	0

Jun-yi Xiang

#	Article	IF	CITATIONS
37	Preparation of Rutile from Ilmenite Concentrate Through Pressure Leaching with Hydrochloric Acid. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1333-1341.	2.1	15
38	Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag. Journal of Hazardous Materials, 2017, 336, 1-7.	12.4	75
39	A novel process to prepare high-titanium slag by carbothermic reduction of pre-oxidized ilmenite concentrate with the addition of Na 2 SO 4. International Journal of Mineral Processing, 2017, 167, 68-78.	2.6	31
40	Effect of Mechanical Activation Treatment on the Recovery of Vanadium from Converter Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2759-2767.	2.1	34
41	Effect of pre-oxidation on the carbothermic reduction of ilmenite concentrate powder. International Journal of Mineral Processing, 2017, 169, 176-184.	2.6	21
42	Mechanochemical Effects on the Roasting Behavior of Vanadium-bearing LD Converter Slag in the Air. ISIJ International, 2017, 57, 970-977.	1.4	8
43	Sulfuric Acid Leaching of Mechanically Activated Vanadium–Bearing Converter Slag. Minerals, Metals and Materials Series, 2017, , 193-202.	0.4	2
44	The Effects of Thermal Pretreatment on Leaching of Yunnan Ilmenite with Hydrochloric Acid. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 1334-1339.	2.1	3