Patrick C Even

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/350959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 2003, 421, 182-187.	27.8	1,881
2	The Extracellular Signal-Regulated Kinase Isoform ERK1 Is Specifically Required for In Vitro and In Vivo Adipogenesis. Diabetes, 2005, 54, 402-411.	0.6	285
3	Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis. PLoS ONE, 2009, 4, e5844.	2.5	189
4	Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R459-R476.	1.8	185
5	Deletion of the Angiotensin Type 2 Receptor (AT2 <i>R</i>) Reduces Adipose Cell Size and Protects From Diet-Induced Obesity and Insulin Resistance. Diabetes, 2005, 54, 991-999.	0.6	183
6	AMPK Activation Reduces Hepatic Lipid Content by Increasing Fat Oxidation In Vivo. International Journal of Molecular Sciences, 2018, 19, 2826.	4.1	98
7	Alterations of lipid metabolism and gene expression in rat adipocytes during chronic olanzapine treatment. Molecular Psychiatry, 2007, 12, 562-571.	7.9	91
8	Protein is more potent than carbohydrate for reducing appetite in rats. Physiology and Behavior, 2002, 75, 577-582.	2.1	90
9	Practical aspects of indirect calorimetry in laboratory animals. Neuroscience and Biobehavioral Reviews, 1994, 18, 435-447.	6.1	88
10	A high-protein diet enhances satiety without conditioned taste aversion in the rat. Physiology and Behavior, 2003, 78, 311-320.	2.1	86
11	Quinoa Extract Enriched in 20â€Hydroxyecdysone Protects Mice From Dietâ€Induced Obesity and Modulates Adipokines Expression. Obesity, 2012, 20, 270-277.	3.0	80
12	Detection of extracellular glucose by GLUT2 contributes to hypothalamic control of food intake. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E1078-E1087.	3.5	69
13	Below Thermoneutrality, Changes in Activity Do Not Drive Changes in Total Daily Energy Expenditure between Groups of Mice. Cell Metabolism, 2012, 16, 665-671.	16.2	69
14	A model for antipsychotic-induced obesity in the male rat. Psychopharmacology, 2006, 187, 447-454.	3.1	63
15	Long term treatment with olanzapine mixed with the food in male rats induces body fat deposition with no increase in body weight and no thermogenic alteration. Appetite, 2006, 46, 254-262.	3.7	62
16	Kinin B1 Receptor Deficiency Leads to Leptin Hypersensitivity and Resistance to Obesity. Diabetes, 2008, 57, 1491-1500.	0.6	61
17	Inhibition of food intake induced by acute stress in rats is due to satiation effects. Physiology and Behavior, 2011, 104, 675-683.	2.1	60
18	A CLA Mixture Prevents Body Triglyceride Accumulation without Affecting Energy Expenditure in Syrian Hamsters. Journal of Nutrition, 2002, 132, 2682-2689.	2.9	59

#	Article	IF	CITATIONS
19	A tryptophan-rich protein diet efficiently restores sleep after food deprivation in the rat. Behavioural Brain Research, 2004, 152, 335-340.	2.2	53
20	Adaptive changes in energy expenditure during mild and severe feed restriction in the rat. British Journal of Nutrition, 1993, 70, 421-431.	2.3	52
21	Hindlimb immobilization applied to 21-day-oldmdx mice prevents the occurrence of muscle degeneration. Journal of Applied Physiology, 1999, 86, 924-931.	2.5	51
22	Body weight, body composition, and energy metabolism in lean and obese Zucker rats fed soybean oil or butter. American Journal of Clinical Nutrition, 2002, 75, 21-30.	4.7	49
23	Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet. Physiology and Behavior, 2014, 128, 226-231.	2.1	48
24	A High-Protein Meal Exceeds Anabolic and Catabolic Capacities in Rats Adapted to a Normal Protein Diet. Journal of Nutrition, 2000, 130, 2312-2321.	2.9	47
25	Hydrolyzed collagen improves bone status and prevents bone loss in ovariectomized C3H/HeN mice. Osteoporosis International, 2012, 23, 1909-1919.	3.1	47
26	Increasing Protein at the Expense of Carbohydrate in the Diet Down-Regulates Glucose Utilization as Glucose Sparing Effect in Rats. PLoS ONE, 2011, 6, e14664.	2.5	43
27	Acute Ingestion of Dietary Proteins Improves Post-Exercise Liver Glutathione in Rats in a Dose-Dependent Relationship with their Cysteine Content. Journal of Nutrition, 2004, 134, 128-131.	2.9	42
28	High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats. British Journal of Nutrition, 2015, 114, 1132-1142.	2.3	40
29	Utilisation of the method of Kalman filtering for performing the on-line computation of background metabolism in the free-moving, free-feeding rat. Physiology and Behavior, 1991, 49, 177-187.	2.1	37
30	Increasing the Protein Content in a Carbohydrate-Free Diet Enhances Fat Loss during 35% but Not 75% Energy Restriction in Rats. Journal of Nutrition, 2004, 134, 2646-2652.	2.9	37
31	Perinatal Protein Malnutrition Affects Mitochondrial Function in Adult and Results in a Resistance to High Fat Diet-Induced Obesity. PLoS ONE, 2014, 9, e104896.	2.5	37
32	A tryptic hydrolysate from bovine milk αS1-casein improves sleep in rats subjected to chronic mild stress. Peptides, 2006, 27, 1476-1482.	2.4	35
33	Low-protein and methionine, high-starch diets increase energy intake and expenditure, increase FGF21, decrease IGF-1, and have little effect on adiposity in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R486-R501.	1.8	35
34	Effects of chronic neuroleptic treatments on nutrient selection, body weight, and body composition in the male rat under dietary self-selection. Behavioural Brain Research, 2005, 163, 204-211.	2.2	34
35	Loss of Sugar Detection by GLUT2 Affects Glucose Homeostasis in Mice. PLoS ONE, 2007, 2, e1288.	2.5	33
36	Low-protein diet induces, whereas high-protein diet reduces hepatic FGF21 production in mice, but glucose and not amino acids up-regulate FGF21 in cultured hepatocytes. Journal of Nutritional Biochemistry, 2016, 36, 60-67.	4.2	31

#	Article	IF	CITATIONS
37	Dystrophin-dependent efficiency of metabolic pathways in mouse skeletal muscles. Experientia, 1994, 50, 602-605.	1.2	30
38	A preexercise α-lactalbumin-enriched whey protein meal preserves lipid oxidation and decreases adiposity in rats. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E565-E572.	3.5	28
39	Modifying the Dietary Carbohydrate-to-Protein Ratio Alters the Postprandial Macronutrient Oxidation Pattern in Liver of AMPK-Deficient Mice. Journal of Nutrition, 2017, 147, 1669-1676.	2.9	27
40	Short-term control of feeding: Limitation of the glucostatic theory. Brain Research Bulletin, 1986, 17, 621-626.	3.0	26
41	Feeding Patterns and Meal Microstructure During Development of a Taste Aversion to a Threonine Devoid Diet. Nutritional Neuroscience, 2002, 5, 269-278.	3.1	26
42	Total Subdiaphragmatic Vagotomy Does Not Suppress High Protein Diet–Induced Food Intake Depression in Rats. Journal of Nutrition, 2003, 133, 2639-2642.	2.9	26
43	Early perturbation in feeding behaviour and energy homeostasy in olanzapine-treated rats. Psychopharmacology, 2009, 206, 167-176.	3.1	26
44	Low-protein diet-induced hyperphagia and adiposity are modulated through interactions involving thermoregulation, motor activity, and protein quality in mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E139-E151.	3.5	26
45	The postprandial use of dietary amino acids as an energy substrate is delayed after the deamination process in rats adapted for 2Âweeks to a high protein diet. Amino Acids, 2011, 40, 1461-1472.	2.7	25
46	Metabolic mechanism of the anorectic and leptogenic effects of the serotonin agonist fenfluramine. Appetite, 1986, 7, 141-163.	3.7	24
47	Lactose malabsorption and colonic fermentations alter host metabolism in rats. British Journal of Nutrition, 2013, 110, 625-631.	2.3	24
48	Impact of Orexin-A Treatment on Food Intake, Energy Metabolism and Body Weight in Mice. PLoS ONE, 2017, 12, e0169908.	2.5	23
49	Effects on metabolic and hormonal parameters of monosodium glutamate (umami taste) ingestion in the rat. Physiology and Behavior, 1991, 49, 1013-1018.	2.1	21
50	Dysregulation of energy homeostasis in mice overexpressing insulin-like growth factor-binding protein 6 in the brain. Diabetologia, 2005, 48, 1189-1197.	6.3	21
51	Dextrofenfluramine increases energy cost of muscular effort. Pharmacology Biochemistry and Behavior, 1986, 24, 647-655.	2.9	20
52	Chronic vascular catheterization in the mouse. Physiology and Behavior, 1993, 54, 895-898.	2.1	20
53	Hydration increases cell metabolism. International Journal of Obesity, 2009, 33, 385-385.	3.4	20
54	Prevention of Adipose Tissue Depletion during Food Deprivation in Angiotensin Type 2 Receptor-Deficient Mice. Endocrinology, 2006, 147, 5078-5086.	2.8	19

#	Article	IF	CITATIONS
55	Rapid Fall in Plasma Threonine followed by Increased Intermeal Interval in Response to First Ingestion of a Threonine-devoid Diet in Rats. Appetite, 1999, 33, 329-341.	3.7	18
56	Rats Free to Select between Pure Protein and a Fat-Carbohydrate Mix Ingest High-Protein Mixed Meals during the Dark Period and Protein Meals during the Light Period. Journal of Nutrition, 2004, 134, 618-624.	2.9	18
57	Obesity-prone high-fat-fed rats reduce caloric intake and adiposity and gain more fat-free mass when allowed to self-select protein from carbohydrate:fat intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1169-R1176.	1.8	18
58	Energy restriction with protein restriction increases basal metabolism and meal-induced thermogenesis in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R751-R759.	1.8	17
59	Effects of monosodium glutamate supplementation on glutamine metabolism in adult rats. Frontiers in Bioscience - Elite, 2011, E3, 279-290.	1.8	17
60	Rats Prone to Obesity Under a High-Carbohydrate Diet have Increased Post-Meal CCK mRNA Expression and Characteristics of Rats Fed a High-Glycemic Index Diet. Frontiers in Nutrition, 2015, 2, 22.	3.7	17
61	Effects of the Sequence of Isocaloric Meals with Different Protein Contents on Plasma Biochemical Indexes in Pigs. PLoS ONE, 2015, 10, e0125640.	2.5	17
62	Disrupting IGF Signaling in Adult Mice Conditions Leanness, Resilient Energy Metabolism, and High Growth Hormone Pulses. Endocrinology, 2017, 158, 2269-2283.	2.8	17
63	Metabolic Rate and Feeding Behavior. Annals of the New York Academy of Sciences, 1989, 575, 86-105.	3.8	16
64	Dietary fibers reduce food intake by satiation without conditioned taste aversion in mice. Physiology and Behavior, 2013, 110-111, 13-19.	2.1	16
65	Protein status modulates the rewarding value of foods and meals to maintain an adequate protein intake. Physiology and Behavior, 2019, 206, 7-12.	2.1	16
66	Peripherally injected cholecystokinin-induced neuronal activation is modified by dietary composition in mice. NeuroImage, 2010, 50, 1560-1565.	4.2	15
67	Intermittent access to liquid sucrose differentially modulates energy intake and related central pathways in control or high-fat fed mice. Physiology and Behavior, 2015, 140, 44-53.	2.1	15
68	Editorial: Are Rodent Models Fit for Investigation of Human Obesity and Related Diseases?. Frontiers in Nutrition, 2017, 4, 58.	3.7	15
69	Postprandial Nutrient Partitioning but Not Energy Expenditure Is Modified in Growing Rats during Adaptation to a High-Protein Diet. Journal of Nutrition, 2010, 140, 939-945.	2.9	14
70	Identification of behavioral and metabolic factors predicting adiposity sensitivity to both high fat and high carbohydrate diets in rats. Frontiers in Physiology, 2011, 2, 96.	2.8	14
71	Lipostatic and ischymetric mechanisms originate dexfenfluramine-induced anorexia. Pharmacology Biochemistry and Behavior, 1988, 30, 89-99.	2.9	13
72	Substrate oxidation during exercise in the rat cannot fully account for training-induced changes in macronutrients selection. Metabolism: Clinical and Experimental, 1998, 47, 777-782.	3.4	13

#	Article	IF	CITATIONS
73	Restriction-refeeding of calories and protein induces changes to slow wave and paradoxical sleep that parallel changes in body lipid and protein levels in rats. Behavioural Brain Research, 2005, 164, 156-164.	2.2	13
74	The Carbohydrate Sensitive Rat as a Model of Obesity. PLoS ONE, 2013, 8, e68436.	2.5	13
75	Hypothalamic ventromedial COUP-TFII protects against hypoglycemia-associated autonomic failure. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4333-4338.	7.1	13
76	Metabolic Action of Neuropeptide Y in Relation to Its Effect on Feeding. Physiology and Behavior, 1997, 62, 1259-1264.	2.1	12
77	Long term ingestion of a preload containing fructo-oligosaccharide or guar gum decreases fat mass but not food intake in mice. Physiology and Behavior, 2015, 147, 198-204.	2.1	12
78	Hypothalamus integrity and appetite regulation in low birth weight rats reared artificially on a high-protein milk formula. Journal of Nutritional Biochemistry, 2011, 22, 956-963.	4.2	11
79	Food intake and energy expenditure are increased in high-fat-sensitive but not in high-carbohydrate-sensitive obesity-prone rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R299-R309.	1.8	11
80	Severe protein deficiency induces hepatic expression and systemic level of FGF21 but inhibits its hypothalamic expression in growing rats. Scientific Reports, 2021, 11, 12436.	3.3	11
81	Acute third ventricular administration of leptin decreases protein and fat in self-selecting rats. Behavioural Brain Research, 2005, 159, 119-125.	2.2	10
82	Increased Cost of Motor Activity and Heat Transfer between Non-Shivering Thermogenesis, Motor Activity, and Thermic Effect of Feeding in Mice Housed at Room Temperature – Implications in Pre-Clinical Studies. Frontiers in Nutrition, 2016, 3, 43.	3.7	10
83	Liver GCN2 controls hepatic FGF21 secretion and modulates whole body postprandial oxidation profile under a low-protein diet. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1015-E1021.	3.5	10
84	Fat-depleted CLA-treated mice enter torpor after a short period of fasting. Appetite, 2004, 42, 91-98.	3.7	9
85	Metabolic effects of intermittent access to caloric or non-caloric sweetened solutions in mice fed a high-caloric diet. Physiology and Behavior, 2017, 175, 47-55.	2.1	9
86	Protein Status Modulates an Appetite for Protein To Maintain a Balanced Nutritional State—A Perspective View. Journal of Agricultural and Food Chemistry, 2020, 68, 1830-1836.	5.2	9
87	Effect of intraperitoneal injection of glucose on glucose oxidation and energy expenditure in the mdx mouse model of Duchenne muscular dystrophy. Pflugers Archiv European Journal of Physiology, 1996, 432, 379-385.	2.8	8
88	Postprandial effects of a lipid-rich meal in the rat are modulated by the degree of unsaturation of 18C fatty acids. Metabolism: Clinical and Experimental, 2010, 59, 231-240.	3.4	8
89	Peripheral administration of bombesin increases metabolism in the rat. Physiology and Behavior, 1991, 49, 439-442.	2.1	6
90	Intermittent access to a sucrose solution impairs metabolism in obesity-prone but not obesity-resistant mice. Physiology and Behavior, 2016, 154, 175-183.	2.1	6

#	Article	IF	CITATIONS
91	Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet. Physiology and Behavior, 2017, 182, 114-120.	2.1	6
92	Activation of Adenosine Monophosphate—Activated Protein Kinase Reduces the Onset of Dietâ€Induced Hepatocellular Carcinoma in Mice. Hepatology Communications, 2020, 4, 1056-1072.	4.3	6
93	What does selfâ€selection of dietary proteins in rats tell us about protein requirements and body weight control?. Obesity Reviews, 2021, 22, e13194.	6.5	6
94	Adaptation to a high-protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R771-R778.	1.8	5
95	High Pancreatic Amylase Expression Promotes Adiposity in Obesity-Prone Carbohydrate-Sensitive Rats. Journal of Nutrition, 2019, 149, 270-279.	2.9	5
96	Agreement between indirect calorimetry and traditional tests of lactose malabsorption. Digestive and Liver Disease, 2013, 45, 727-732.	0.9	4
97	Urinary metabolic profile predicts high-fat diet sensitivity in the C57Bl6/J mouse. Journal of Nutritional Biochemistry, 2016, 31, 88-97.	4.2	4
98	Food intake control and body weight regulation by dietary protein. Cahiers De Nutrition Et De Dietetique, 2020, 55, e1-e8.	0.3	2
99	Protein-carbohydrate interaction effects on energy balance, FGF21, IGF-1 and hypothalamic genes expression in rats. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E621-E635.	3.5	2
100	Body size, spontaneous activity and thermogenesis effects on energy expenditure: an introduction to a topic on energy metabolism. Frontiers in Physiology, 2013, 4, 301.	2.8	1
101	Impact of Low Protein and Lysine-deficient Diets on Bone Metabolism (P08-072-19). Current Developments in Nutrition, 2019, 3, nzz044.P08-072-19.	0.3	1
102	Plasma FGF21 Levels in Rats Are Dependent on Dietary Proteins but Not on Dietary Carbohydrates or Fats. Current Developments in Nutrition, 2020, 4, nzaa049_020.	0.3	1
103	Rats Self-Select a Constant Protein-to-Carbohydrate Ratio Rather Than a Constant Protein-to-Energy Ratio and Have Low Plasma FGF21 Concentrations. Journal of Nutrition, 2021, 151, 1921-1936.	2.9	1
104	Study of the changes in energy expenditure induced by restricted feeding in the rats. Appetite, 1989, 12, 207.	3.7	0
105	Effet anti-obésité des CLAÂ: mythe ou réalitéÂ?. Oleagineux Corps Gras Lipides, 2005, 12, 45-50.	0.2	0
106	Effets des acides gras conjugués sur les composantes de la dépense énergétique chez la souris et le hamster. Oleagineux Corps Gras Lipides, 2005, 12, 37-44.	0.2	0
107	Low Protein/low Methionine/high Carbohydrate Diets Induce Hyperphagia, Increase Energy Expenditure and FGF21, but Modestly Affect Adiposity in Female BalbC Mice (OR09-01-19). Current Developments in Nutrition, 2019, 3, nzz041.OR09-01-19.	0.3	0
108	Molecular Markers of Dietary Essential Amino Acid-deficiency (P08-059-19). Current Developments in Nutrition, 2019, 3, nzz044.P08-059-19.	0.3	0

#	Article	IF	CITATIONS
109	Severe Protein Restriction Activates Liver Protein Catabolism and ATF4-CHOP-TRB3 Pathway to Comprensate for Amino Acid Deficiency. Current Developments in Nutrition, 2020, 4, nzaa049_040.	0.3	0
110	Influence de la teneur en protéines de l'alimentation sur le contrÃ1e de la prise alimentaire et la régulation du poids. Cahiers De Nutrition Et De Dietetique, 2020, 55, 223-232.	0.3	0
111	The Consequences of LP Diet on Food Intake, Energy Expenditure and Hepatic and Hypothalamic FGF21 Are Reproduced by ILsine or Threonine Deficiency in Rats. Current Developments in Nutrition, 2020, 4, nzaa049_041.	0.3	0
112	Molecular markers of dietary essential amino acid-deficiency. Proceedings of the Nutrition Society, 2020, 79, .	1.0	0
113	Lower Synthesis and Higher Catabolism of Liver and Muscle Protein Compensate for Amino Acid Deficiency in Severely Protein-Restricted Growing Rat. Current Developments in Nutrition, 2021, 5, 518.	0.3	0
114	Lysine and Threonine Restriction Reproduced the Lower Synthesis but Not the Higher Catabolism of Liver and Muscle Protein of Severely Protein Restricted Growing Rats. Current Developments in Nutrition, 2021, 5, 519.	0.3	0
115	In rats fed a high protein diet, almost half of the carbon skeletons derived from dietary amino acid deamination are not oxidized during the postprandial phase. FASEB Journal, 2007, 21, A162.	0.5	0
116	Evidence for a long time course adaptation of glucose metabolism to high protein feeding in rats without changes in resting energy expenditure. FASEB Journal, 2008, 22, 441.7.	0.5	0
117	Whole body amino acids are candidate precursors of postprandial hepatic neoglycogenogenesis in high protein fed rats. FASEB Journal, 2009, 23, 738.9.	0.5	0
118	Plasma FGF21 concentrations and spontaneous self-selection of protein suggest that 15% protein in the diet may not be enough for male adult rats. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E154-E164.	3.5	0
119	Components of energy expenditure in the mdx mouse model of Duchenne muscular dystrophy. Pflugers Archiv European Journal of Physiology, 1996, 431, 527-532.	2.8	0