Minoru Seki

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3509430/publications.pdf
Version: 2024-02-01

1. Process simplification and structure design of parallelized microslit isolator for physical property-based capture of tumor cells. Analyst, The, 2022, 147, 1622-1630.

Formation of 3D tissues of primary hepatocytes using fibrillized collagen microparticles as intercellular binders. Journal of Bioscience and Bioengineering, 2022, 133, 265-272.

Microengineering of Collagen Hydrogels Integrated into Microfluidic Devices for Perfusion Culture

Polyanion-induced, microfluidic engineering of fragmented collagen microfibers for reconstituting 4 extracellular environments of 3D hepatocyte culture. Materials Science and Engineering C, 2021, 129, 112417.

PDMS microstencil plate-supported fabrication of ultra-thin, condensed ECM membranes for
3.1

26
Micropassage-embedding composite hydrogel fibers enable quantitative evaluation of cancer cell
invasion under 3D coculture conditions. Lab on A Chip, 2018, 18, 1378-1387.

Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers. Journal of Bioscience and Bioengineering, 2018, 126, 111-118.

Assembly of carbon nanotubes into microparticles with tunable morphologies using droplets in a

21	Direct Observation of Splitting in Oil-In-Water-In-Oil Emulsion Droplets via a Microchannel Mimicking Membrane Pores. Langmuir, 2017, 33, 14087-14092.	1.6	17
22	Control of invasion direction of cancer cells using hierarchically patterned hydrogel sheets. , 2017, ,		1
23	Microstructure Formation on Polytetrafluoroethylene (PTFE) and Perfluoroalkoxy (PFA) Bulk Plates by a Magnetron Enhanced Reactive Ion Etching System. Journal of the Vacuum Society of Japan, 2017, 60, 176-181.	0.3	0
24	Microfluidics-based wet spinning of protein microfibers as solid scaffolds for 3D cell cultivation. , 2016, , .		0
25	Microfluidic System Enabling Multistep Tuning of Extraction Time Periods for Kinetic Analysis of Droplet-Based Liquidâ $\epsilon^{\prime \prime} L i q u i d ~ E x t r a c t i o n . ~ A n a l y t i c a l ~ C h e m i s t r y, ~ 2016, ~ 88, ~ 5637-5643 . ~ \$$	3.2	10
26	Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms. Biotechnology Journal, 2016, 11, 1415-1423.	1.8	36
27	A new method for continuous sorting of cells/particles using lattice-shaped dual-depth microchannels. , 2015, , .		4

28 One-step microfluidic spinning of collagen microfibers and their application to cell cultivation. , 2015, ,.

```
29 Morphology control of protein microparticles produced using microfluidic droplets in a
    non-equilibrium state., 2015, , .
```

30 Enhancement of osteoblastic differentiation in alginate gel beads with bioactive octacalcium
1.7
10
phosphate particles. Biomedical Materials (Bristol), 2015, 10, 065019.
On-chip fabrication and magnetic force estimation of peapod-like hybrid microfibers using a
microfluidic device. Microfluidics and Nanofluidics, 2015, 18, 1177-1187.
1.0
36
microfluidic device. Microfluidics and Nanofluidics, 2015, 18, 1177-1187.

Formation of Monodisperse Hierarchical Lipid Particles Utilizing Microfluidic Droplets in a

37	Patterned hydrogel microfibers prepared using multilayered microfluidic devices for guiding network formation of neural cells. Biofabrication, 2014, 6, 035011.	3.7	46
38	In vitro assessment of osteoblastic differentiation of encapsulated stromal cells in alginate/octacalcium phosphate., 2014, , .		0
39	Shape control of cell-embedding hydrogel microstructures utilizing non-equilibrium aqueous two-phase systems. , 2014, , .		1
40	Facile fabrication processes for hydrogel-based microfluidic devices made of natural biopolymers. Biomicrofluidics, 2014, 8, 024115.	1.2	32
41	Asymmetric lattice-shaped microchannel structures for continuous size-dependent cell sorting. , 2014, , .		0
42	One-step synthesis of spherical/nonspherical polymeric microparticles using non-equilibrium microfluidic droplets. RSC Advances, 2014, 4, 13557.	1.7	20
43	On-chip fabrication of magnetic alginate hydrogel microfibers by multilayered pneumatic microvalves. Microfluidics and Nanofluidics, 2014, 17, 457-468.	1.0	21
44	Microfluidic counterflow centrifugal elutriation system for sedimentation-based cell separation. Microfluidics and Nanofluidics, 2013, 14, 1049-1057.	1.0	17
45	Magnetophoresis-Integrated Hydrodynamic Filtration System for Size- and Surface Marker-Based Two-Dimensional Cell Sorting. Analytical Chemistry, 2013, 85, 7666-7673.	3.2	59
46	Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts. Journal of Bioscience and Bioengineering, 2013, 116, 761-767.	1.1	68
47	Microfabricated complex hydrogel fibers for quantitative evaluation of cancer cell invasion in in vivo tissue-like environments. , 2013, , .		0
48	Cell encapsulation into alginate/octacalcium phosphate hydrogel beads for bone regenerative therapy. , 2013, , .		0
49			0

50 Magnetic manipulation for spatially patternel alginate hydrogel microfibers. , 2013, , . 1
A droplet-based microfluidic process to produce yarn-ball-shaped hydrogel microbeads. RSC Advances,
$2013,3,12299$.

52 Assembly techniques for artificial small diameter blood vessel structures. , 2013, , .

53 Low-pressure plasma-etching of bulk polymer materials using gas mixture of CF4 and O2. AIP Advances,
2013, 3, 112105.
0.6

Preparation and characterization of magnetic PEGDA beads for enhanced construction of hydrogel

59	Fabrication of Complex Hydrogel Materials by Utilizing Microfluidics and Micromolding. Materials Research Society Symposia Proceedings, 2012, 1415, 157.	0.1	0
60	Manipulation of cells and cell spheroids using collagen hydrogel microbeads prepared by microfluidic devices. , 2012, , .		2
61	Fabrication of vascular tissue models by assembling multiple cell types inside hydrogel microchannels. , 2012, , .		5
62	Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter, 2012, 8, 3122.	1.2	158
63	Micropatterning of Hydrogels on Locally Hydrophilized Regions on PDMS by Stepwise Solution Dipping and in Situ Gelation. Langmuir, 2012, 28, 14073-14080.	1.6	17
64	Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials, 2012, 33, 8304-8315.	5.7	227
65	Fluidic preparation of patterned hydrogel fibers using micronozzle-array devices for neural cell guidance., 2012, , .		0
66	Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange. Biomedical Microdevices, 2012, 14, 751-757.	1.4	16
67	Fluidic shear-assisted formation of actuating multilamellar lipid tubes using microfabricated nozzle array device. Chemical Communications, 2011, 47, 8433.	2.2	10

Fabrication of functional hydrogel microbeads utilizing non-equilibrium microfluidics for biological applications., 2011, , .

69 Size-dependent sorting of corneal limbal epithelial cell with microfluidic chip. , 2011, , .
0

70 Formation of self-actuating lipid tubes using microfabricated picoliter nozzle array., 2011, , .

[^0]$77 \quad$| Solâ€"gel based fabrication of hybrid microfluidic devices composed of PDMS and thermoplastic |
| :--- |
| substrates. Sensors and Actuators B: Chemical, 2010, 148, 323-329. |

78 Development of microfluidic cell nucleus separator employing rapid chemical treatment. , 2010, , .

Polymer surface morphology control by reactive ion etching for microfluidic devices. Sensors and
Microfluidic devices for size-dependent separation of liver cells. Biomedical Microdevices, 2007, 9,
637-645.

A microfluidic flow distributor generating stepwise concentrations for high-throughput
3.1

50

115	Stimulatory Effect of an Indirectly Attached RNA Helicase-Recruiting Sequence on the Suppression of Gene Expression by Antisense Oligonucleotides. Oligonucleotides, 2003, 13, 9-17.	4.4	3
116		0.0	1
117	Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2. Nucleic Acids Symposium Series, 2002, 2, 251-252.	0.3	31
118	Isolation and Characterization of Polyhydroxyalkanoates Inclusions and Their Associated Proteins inPseudomonassp. 61-3. Biomacromolecules, 2002, 3, 787-792.	2.6	31
119	Characterization of Spontaneous Transformation-Based Droplet Formation during Microchannel Emulsification. Journal of Physical Chemistry B, 2002, 106, 9405-9409.	1.2	186
120	Preparation of Monodispersed Polymeric Microspheres over 50 1̂1/4m Employing Microchannel Emulsification. Industrial \& Engineering Chemistry Research, 2002, 41, 4043-4047.	1.8	71
121	Effect of Channel Structure on Microchannel Emulsification. Langmuir, 2002, 18, 5708-5712.	1.6	145
122	Prediction of Droplet Diameter for Microchannel Emulsification. Langmuir, 2002, 18, 3854-3859.	1.6	134
123	Interesterification and hydrolysis catalyzed by fatty acid-modified lipases. European Journal of Lipid Science and Technology, 2002, 104, 255-261.	1.0	8
124	Preparation of monodispersed emulsion with large droplets using microchannel emulsification. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 515-519.	0.8	61
125	Screening for transgenic plant cells that highly express a target gene from genetically mixed cells. Biochemical Engineering Journal, 2002, 10, 175-182.	1.8	5

127	Small-Angle X-Ray Scattering Analysis of Stearic Acid Modified Lipase. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1003-1006.	0.6	20
128	Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) Copolymer from Sugars by RecombinantRalstoniaeutrophaHarboring thephaC1Psand thephaGPsGenes ofPseudomonassp. 61-3. Biomacromolecules, 2001, 2, 934-939.	2.6	50
129	Cloning and Characterization of thePseudomonassp. 61-3phaGGene Involved in Polyhydroxyalkanoate Biosynthesis. Biomacromolecules, 2001, 2, 142-147.	2.6	33
130	Interfacial Tension Driven Monodispersed Droplet Formation from Microfabricated Channel Array. Langmuir, 2001, 17, 5562-5566.	1.6	417
131	Preparation Characteristics of Monodispersed Water-in-Oil Emulsions Using Microchannel Emulsification.. Journal of Chemical Engineering of Japan, 2001, 34, 757-765.	0.3	74
132	Structural study of lipase modified with fatty acids. Biochemical Engineering Journal, 2001, 9, 185-191.	1.8	7
133	Formation and Characterization of Reversed Micelles Composed of Phospholipids and Fatty Acids. Journal of Colloid and Interface Science, 2001, 240, 566-572.	5.0	15
134	Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis, 2001, 22, 328-333.	1.3	166
135	Synthesis of Polymeric Microspheres with Narrow Size Distributions Employing Microchannel Emulsification. Macromolecular Rapid Communications, 2001, 22, 773-778.	2.0	97
136	Microfabricated Polymer Chip for Capillary Gel Electrophoresis. Biotechnology Progress, 2001, 17, 958-962.	1.3	39
137	Effect of hydrocarbon-water interfaces on synthetic and hydrolytic activities of lipases. Journal of Bioscience and Bioengineering, 2001, 92, 242-247.	1.1	12
138	Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. , 2001, 22, 328.		19
139	Monodispersed Droplet Formation Caused by Interfacial Tension from Microfabricated Channel Array. , 2001, , 252-261.		4

140 Novel Liquid Injection Method with Wedge-Shaped Microchannel on a PDMS Microchip System for Diagnostic Analyses. , 2001, , 1204-1207.

141 Chromatographic Separation of Proteins on A Pdms-Polymer Chip by Pressure Flow. , 2001, , 48-50.
5

142 Separation and Collection of a Specified DNA Fragment by Chip-Based CE System. , 2001, , 113-114.

143 Diagnostic Analyses by Biochemical Reactions and Separations on a Chip. , 2001, , 542-551.

```
145 Analysis of pigment accumulation heterogeneity in plant cell population by image-processing system.,
    2000, 67, 493-497.
```

Formation of biocompatible reversed micellar systems using phospholipids. Biochemical Engineering
Journal, 2000, 6, 193-199.

```
155 Medium Recycling as an Operational Strategy to Increase Plant Secondary Metabolite Formation. , 1999,
    , 157-163.
```

 156 Plant Cell Immobilization in Loofa Sponge Using Two-Way Bubble Circular System.. Journal of
 0.3
 7
 Anthocyanin synthesis, growth and nutrient uptake in suspension cultures of strawberry cells.
 157 Anthocyanin synthesis, growth and nutrient uptare in suspend Bioengineering, 1998, 86, 72-78.
 0.9
 19
 Characteristics of loofa (Luffa cylindrica) sponge as a carrier for plant cell immobilization. Journal
 Evaluation of Co-Immobilized Lactobacillus Delbrueckii with Porous Particles for Lactic Acid
Production.. Journal of Chemical Engineering of Japan, 1996, 29, 37-43.

166 Changes of anthocyanin composition by conditioned medium and cell inoculum size using strawberry
1.1

24
suspension culture. Biotechnology Letters, 1996, 18, 1149-1154.
167 Effect of CO2 concentration of growth and carbon fixation rate of pleurochrysis carterae.. Journal
of Chemical Engineering of Japan, 1995, 28, 474-476.
0.31

168 Continuous production of taxol by cell culture of taxus cuspidata.. Journal of Chemical Engineering of Japan, 1995, 28, 488-490.
0.3

27

169	Characteristics of immobilized Lactobacillus delbrueckii in a liquid-solid fluidized bed bioreactor for lactic acid production.. Journal of Chemical Engineering of Japan, 1995, 28, 198-203.	0.3	9
170	Mass transfer behavior in lactic acid fermentation using immobilized Lactobacillus delbrueckii.. Journal of Chemical Engineering of Japan, 1995, 28, 480-482.	0.3	7
171	Mathematical model for analysis of mass transfer for immobilized cells in lactic acid fermentation. Biotechnology Progress, 1995, 11, 558-564.	1.3	34
172	Use of auxin and cytokinin to regulate anthocyanin production and composition in suspension cultures of strawberry cell. Journal of the Science of Food and Agriculture, 1994, 65, 271-276.	1.7	46
173	Effects of conditioning factor on anthocyanin production in strawberry suspension cultures. Journal of the Science of Food and Agriculture, 1994, 66, 381-388.	1.7	35
174	Increased alkaloid production in a suspension culture of Coffea arabica cells using an adsorption column for product removal. Journal of Bioscience and Bioengineering, 1994, 78, 117-119.	0.9	13
175	Hydrodynamic damage of cultured cells of Carthamus tinctorius in a stirred tank reactor.. Journal of Chemical Engineering of Japan, 1994, 27, 466-471.	0.3	37

176 Light Effect to Promote Secondary Metabolite Production of Plant Cell Culture. , 1994, , 103-133.
4

177 Factors Affecting Vitamin E Production Using Plant Cell Culture of Carthamus Tinctorius.. Journal of Chemical Engineering of Japan, 1993, 26, 470-474.
$\begin{array}{ll}0.3 & 7\end{array}$

Effect of Co-immobilization of Microporous Particles on the Overall Reaction Rate of Immobilized
0.3

9
Cell Biocatalysts.. Journal of Chemical Engineering of Japan, 1993, 26, 662-668.

Growth and Carbon Fixation Rate of Calcareous Algae Cricosphaera carterae.. Kagaku Kogaku
Ronbunshu, 1993, 19, 893-900.
$0.1 \quad 1$

185 Effect of intraparticle diffusion on reaction by immobilized growing yeast.. Journal of Chemical

Reaction characteristics of an immobilized yeast producing ethanol. Biotechnology and Bioengineering, 1983, 25, 2921-2928.

[^0]: Microfluidics and microfabrication technology for highly precise cell manipulation and cultivation. , 2011, , .

