## Gian Paolo Rossini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3509220/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Palytoxin Induces Dissociation of HSP 27 Oligomers through a p38 Protein Kinase Pathway. Chemical<br>Research in Toxicology, 2015, 28, 752-764.                                                                                                                                                                                                                                         | 1.7 | 4         |
| 2  | Azaspiracid-1 Inhibits the Maturation of Cathepsin D in Mammalian Cells. Chemical Research in Toxicology, 2013, 26, 444-455.                                                                                                                                                                                                                                                            | 1.7 | 12        |
| 3  | Palytoxin and Other Microalgal Toxins Belonging to Different Chemical Classes Induce Cytotoxic<br>Effects Involving a Common Set of Stress Response Proteins. Cryptogamie, Algologie, 2012, 33, 99-103.                                                                                                                                                                                 | 0.3 | 1         |
| 4  | Letter to the Editor regarding "Collaborative study for the detection of toxic compounds in shellfish<br>extracts using cell-based assays. Part I: screening strategy and pre-validation study with lipophilic<br>marine toxins―and "Part II: application to shellfish extracts spiked with lipophilic marine toxins.―<br>Analytical and Bioanalytical Chemistry, 2012, 404, 1611-1611. | 1.9 | 0         |
| 5  | Towards tailored assays for cell-based approaches to toxicity testing. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 359-372.                                                                                                                                                                                                                                                | 0.9 | 18        |
| 6  | Palytoxin Induces Cell Lysis by Priming a Two-Step Process in MCF-7 Cells. Chemical Research in<br>Toxicology, 2011, 24, 1283-1296.                                                                                                                                                                                                                                                     | 1.7 | 8         |
| 7  | Palytoxin action on the Na+,K+-ATPase and the disruption of ion equilibria in biological systems.<br>Toxicon, 2011, 57, 429-439.                                                                                                                                                                                                                                                        | 0.8 | 80        |
| 8  | New challenges from an "old―toxin. Toxicon, 2011, 57, 359-361.                                                                                                                                                                                                                                                                                                                          | 0.8 | 4         |
| 9  | The Use of Proteomics in the Study of Molecular Responses and Toxicity Pathways in Biological<br>Systems. Advances in Molecular Toxicology, 2011, 5, 45-109.                                                                                                                                                                                                                            | 0.4 | 4         |
| 10 | Azaspiracid-1 Inhibits Endocytosis of Plasma Membrane Proteins in Epithelial Cells. Toxicological<br>Sciences, 2010, 117, 109-121.                                                                                                                                                                                                                                                      | 1.4 | 21        |
| 11 | Yessotoxin inhibits phagocytic activity of macrophages. Toxicon, 2010, 55, 265-273.                                                                                                                                                                                                                                                                                                     | 0.8 | 24        |
| 12 | Phycotoxins: chemistry, mechanisms of action and shellfish poisoning. Exs, 2010, 100, 65-122.                                                                                                                                                                                                                                                                                           | 1.4 | 52        |
| 13 | Proteomic Analysis Reveals Multiple Patterns of Response in Cells Exposed to a Toxin Mixture.<br>Chemical Research in Toxicology, 2009, 22, 1077-1085.                                                                                                                                                                                                                                  | 1.7 | 16        |
| 14 | The Cytotoxic Pathway Triggered by Palytoxin Involves a Change in the Cellular Pool of Stress Response Proteins. Chemical Research in Toxicology, 2009, 22, 2009-2016.                                                                                                                                                                                                                  | 1.7 | 15        |
| 15 | The total activity of a mixture of okadaic acid-group compounds can be calculated by those of individual analogues in a phosphoprotein phosphatase 2A assay. Toxicon, 2009, 53, 631-637.                                                                                                                                                                                                | 0.8 | 12        |
| 16 | A cytolytic assay for the measurement of palytoxin based on a cultured monolayer cell line. Analytical<br>Biochemistry, 2008, 374, 48-55.                                                                                                                                                                                                                                               | 1.1 | 58        |
| 17 | Addendum to "A cytolytic assay for the measurement of palytoxin based on a cultured monolayer cell<br>line―[Anal. Biochem. 374 (2008) 48–55]. Analytical Biochemistry, 2008, 381, 178.                                                                                                                                                                                                  | 1.1 | 8         |
| 18 | Yessotoxin inhibits the complete degradation of E-cadherin. Toxicology, 2008, 244, 133-144.                                                                                                                                                                                                                                                                                             | 2.0 | 30        |

GIAN PAOLO ROSSINI

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Yessotoxin induces the accumulation of altered E-cadherin dimers that are not part of adhesive structures in intact cells. Toxicology, 2008, 244, 145-156.                                                                                              | 2.0 | 21        |
| 20 | Proteomic analyses in the detection of algal toxin contamination in shellfish and the<br>characterization of molecular responses of human cells. Comparative Biochemistry and Physiology<br>Part A, Molecular & Integrative Physiology, 2008, 151, S39. | 0.8 | 0         |
| 21 | Protein markers of algal toxin contamination in shellfish. Toxicon, 2008, 52, 705-713.                                                                                                                                                                  | 0.8 | 17        |
| 22 | A slot blot procedure for the measurement of yessotoxins by a functional assay. Toxicon, 2007, 49, 36-45.                                                                                                                                               | 0.8 | 20        |
| 23 | Oral administration of yessotoxin stabilizes E-cadherin in mouse colon. Toxicology, 2006, 227, 145-155.                                                                                                                                                 | 2.0 | 23        |
| 24 | Azaspiracid-1 Alters the E-cadherin Pool in Epithelial Cells. Toxicological Sciences, 2006, 95, 427-435.                                                                                                                                                | 1.4 | 46        |
| 25 | Effect of Ciguatoxin 3C on Voltage-Gated Na+ and K+ Currents in Mouse Taste Cells. Chemical Senses, 2006, 31, 673-680.                                                                                                                                  | 1.1 | 42        |
| 26 | Functional assays in marine biotoxin detection. Toxicology, 2005, 207, 451-462.                                                                                                                                                                         | 2.0 | 49        |
| 27 | Inhibition of Voltage-Gated Potassium Currents by Gambierol in Mouse Taste Cells. Toxicological<br>Sciences, 2005, 85, 657-665.                                                                                                                         | 1.4 | 72        |
| 28 | Cell culture isolation of a transmissible cytotoxicity from a human sample of cerebrospinal fluid.<br>Neuroscience Letters, 2005, 375, 47-52.                                                                                                           | 1.0 | 4         |
| 29 | Selective disruption of the E-cadherin–catenin system by an algal toxin. British Journal of Cancer,<br>2004, 90, 1100-1107.                                                                                                                             | 2.9 | 68        |
| 30 | Structureâ^'Activity Relationships of Yessotoxins in Cultured Cells. Chemical Research in Toxicology, 2004, 17, 1251-1257.                                                                                                                              | 1.7 | 36        |
| 31 | Functional assay to measure yessotoxins in contaminated mussel samples. Analytical Biochemistry, 2003, 312, 208-216.                                                                                                                                    | 1.1 | 47        |
| 32 | Cytotoxic responses to unfractionated extracts from digestive glands of mussels. Toxicon, 2002, 40, 573-578.                                                                                                                                            | 0.8 | 10        |
| 33 | Caspase activation and death induced by yessotoxin in HeLa cells. Toxicology in Vitro, 2002, 16, 357-363.                                                                                                                                               | 1.1 | 61        |
| 34 | Characterization of F-actin depolymerization as a major toxic event induced by pectenotoxin-6 in neuroblastoma cells. Biochemical Pharmacology, 2002, 63, 1979-1988.                                                                                    | 2.0 | 74        |
| 35 | Recovery of cellular E-cadherin precedes replenishment of estrogen receptor and estrogen-dependent<br>proliferation of breast cancer cells rescued from a death stimulus. Journal of Cellular Physiology,<br>2002, 192, 171-181.                        | 2.0 | 18        |
| 36 | The toxic responses induced by okadaic acid involve processing of multiple caspase isoforms. Toxicon, 2001, 39, 763-770.                                                                                                                                | 0.8 | 47        |

GIAN PAOLO ROSSINI

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Different sensitivities of p42 mitogen-activated protein kinase to phorbol ester and okadaic acid tumor promoters among cell types. Biochemical Pharmacology, 1999, 58, 279-284.                                                            | 2.0 | 11        |
| 38 | Transient Ca2+-dependent activation of ERK1 and ERK2 in cytotoxic responses induced by maitotoxin in breast cancer cells. FEBS Letters, 1999, 458, 137-140.                                                                                 | 1.3 | 13        |
| 39 | Inhibitors of phosphoprotein phosphatases 1 and 2A cause activation of a 53 kDa protein kinase accompanying the apoptotic response of breast cancer cells. FEBS Letters, 1997, 410, 347-350.                                                | 1.3 | 14        |
| 40 | The level of pancreatic PLA2receptor is closely associated with the proliferative state of rat uterine stromal cells. FEBS Letters, 1996, 390, 311-314.                                                                                     | 1.3 | 7         |
| 41 | Binding and internalization of extracellular type-I phospholipase A2 in uterine stromal cells.<br>Biochemical Journal, 1996, 315, 1007-1014.                                                                                                | 1.7 | 14        |
| 42 | Steroid hormones and temperature induce changes of binding parameters of their receptors in intact cells. FEBS Letters, 1995, 376, 151-154.                                                                                                 | 1.3 | 6         |
| 43 | The Quaternary Structures of Untransformed Steroid Hormone Receptors: An Open Issue. Journal of<br>Theoretical Biology, 1994, 166, 339-353.                                                                                                 | 0.8 | 8         |
| 44 | Oligomeric structures of cytosoluble estrogen-receptor complexes as studied by anti-estrogen<br>receptor antibodies and chemical crosslinking of intact cells. Journal of Steroid Biochemistry and<br>Molecular Biology, 1994, 50, 241-252. | 1.2 | 31        |
| 45 | The subcellular distribution of glucocorticoid-receptor complexes as studied by chemical<br>crosslinking of intact HTC cells. Journal of Steroid Biochemistry and Molecular Biology, 1994, 48,<br>517-521.                                  | 1.2 | 4         |
| 46 | Nanomolar concentrations of untransformed glucocorticoid receptor in nuclei of intact cells.<br>Journal of Steroid Biochemistry and Molecular Biology, 1994, 51, 291-298.                                                                   | 1.2 | 12        |
| 47 | High molecular weight biliary protein concentration increases selectively after hydrophobic bile<br>acids (BA) administration. Hepatology, 1993, 18, A304.                                                                                  | 3.6 | 1         |
| 48 | Detection of glucocorticoid-receptor complex oligomers in nuclear extracts from cells exposed to hormone at physiological temperature. Life Sciences, 1992, 51, 1517-1525.                                                                  | 2.0 | 2         |
| 49 | Rapid homologous up-regulation of binding capacity of androgen receptors in intact cells.<br>Biochemical and Biophysical Research Communications, 1991, 181, 383-388.                                                                       | 1.0 | 6         |
| 50 | Transformation of glucocorticoid-receptor complexes is accompanied by dissociation of oligomers in intact cells. Biochemical and Biophysical Research Communications, 1990, 170, 1210-1215.                                                 | 1.0 | 1         |
| 51 | Stabilization of glucocorticoid-receptor interactions by removal of RNA bound to receptor complexes. Life Sciences, 1990, 47, 743-751.                                                                                                      | 2.0 | 2         |
| 52 | Particulate untransformed glucocorticoid-receptor complexes from HeLa cells crosslinked in vivo.<br>Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1011, 183-191.                                                           | 1.9 | 10        |
| 53 | Chemical crosslinking: A useful tool for evaluations of steroid receptor structures and their functional states in intact cells. The Journal of Steroid Biochemistry, 1989, 34, 363-367.                                                    | 1.3 | 8         |
| 54 | Glucocorticoid-receptor complexes are associated with small RNA in vitro. The Journal of Steroid Biochemistry, 1989, 32, 633-642.                                                                                                           | 1.3 | 10        |

GIAN PAOLO ROSSINI

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Characterization of estrogen receptor from human liver. Gastroenterology, 1989, 96, 1102-1109.                                                                                                             | 0.6 | 34        |
| 56 | Ethanol-induced increase in cytosolic estrogen receptors in human male liver: A possible explanation for biochemical feminization in chronic liver disease due to alcohol. Hepatology, 1988, 8, 1610-1614. | 3.6 | 28        |
| 57 | Transformation of glucocorticoid-receptor complex oligomers to DNA-binding forms in the absence of monomerization. Biochimica Et Biophysica Acta - General Subjects, 1987, 924, 119-126.                   | 1.1 | 5         |
| 58 | Glucocorticoid receptors are associated with particles containing DNA and RNA in vivo. Biochemical and Biophysical Research Communications, 1987, 147, 1188-1193.                                          | 1.0 | 12        |
| 59 | Molybdate inhibits glucocorticoid-receptor complex binding to RNA. Molecular and Cellular<br>Endocrinology, 1987, 49, 129-135.                                                                             | 1.6 | 7         |
| 60 | RNase a effects on sedimentation and DNA binding properties of dexamethasone-receptor complexes from HeLa cell cytosol. The Journal of Steroid Biochemistry, 1985, 22, 47-56.                              | 1.3 | 31        |
| 61 | Steroid receptor recycling and its possible role in the modulation of steroid hormone action. Journal of Theoretical Biology, 1984, 108, 39-53.                                                            | 0.8 | 17        |
| 62 | RNA-containing nuclear binding sites for glucocorticoid-receptor complexes. Biochemical and<br>Biophysical Research Communications, 1984, 123, 78-83.                                                      | 1.0 | 12        |
| 63 | RNase-sensitive glucocorticoid-receptor complexes from HeLa cell nuclei. Biochemical and<br>Biophysical Research Communications, 1983, 113, 876-882.                                                       | 1.0 | 20        |
| 64 | Intracellular inactivation, reactivation and dynamic status of prostate androgen receptors.<br>Biochemical Journal, 1982, 208, 383-392.                                                                    | 3.2 | 33        |
| 65 | Signalling networks. , 0, , 135-169.                                                                                                                                                                       |     | 0         |