Joseph E Borovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3508777/publications.pdf

Version: 2024-02-01

182	9,130	56 h-index	88
papers	citations		g-index
192	192	192	3261 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Differences between CME-driven storms and CIR-driven storms. Journal of Geophysical Research, 2006, 111, .	3.3	443
2	The driving of the plasma sheet by the solar wind. Journal of Geophysical Research, 1998, 103, 17617-17639.	3.3	324
3	Auroral arc thicknesses as predicted by various theories. Journal of Geophysical Research, 1993, 98, 6101-6138.	3.3	306
4	Dominant role of the asymmetric ring current in producing the stormtimeDst*. Journal of Geophysical Research, 2001, 106, 10883-10904.	3.3	288
5	Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?. Journal of Geophysical Research, 2008, 113 , .	3 . 3	282
6	The Earth's plasma sheet as a laboratory for flow turbulence in high- \hat{l}^2 MHD. Journal of Plasma Physics, 1997, 57, 1-34.	0.7	265
7	The occurrence rate of magnetosphericâ€substorm onsets: Random and periodic substorms. Journal of Geophysical Research, 1993, 98, 3807-3813.	3.3	215
8	Geomagnetic storms driven by ICME- and CIR-dominated solar wind. Journal of Geophysical Research, 2006, 111, .	3.3	199
9	Plasma sheet access to geosynchronous orbit. Journal of Geophysical Research, 1999, 104, 25047-25061.	3.3	176
10	Substorm electron injections: Geosynchronous observations and test particle simulations. Journal of Geophysical Research, 1998, 103, 9235-9248.	3.3	172
11	MHD turbulence in the Earth's plasma sheet: Dynamics, dissipation, and driving. Journal of Geophysical Research, 2003, 108, .	3.3	163
12	Substorm ion injections: Geosynchronous observations and test particle orbits in three-dimensional dynamic MHD fields. Journal of Geophysical Research, 1997, 102, 2325-2341.	3.3	145
13	Lowâ€degree structure in Mercury's planetary magnetic field. Journal of Geophysical Research, 2012, 117, ·	3.3	131
14	Role of solar wind turbulence in the coupling of the solar wind to the Earth's magnetosphere. Journal of Geophysical Research, 2003, 108, .	3.3	130
15	What determines the reconnection rate at the dayside magnetosphere?. Journal of Geophysical Research, 2008, 113, .	3.3	127
16	Altered solar windâ€magnetosphere interaction at low Mach numbers: Coronal mass ejections. Journal of Geophysical Research, 2008, 113, .	3.3	126
17	The transport of plasma sheet material from the distant tail to geosynchronous orbit. Journal of Geophysical Research, 1998, 103, 20297-20331.	3.3	123
18	The production of ion conics by oblique double layers. Journal of Geophysical Research, 1984, 89, 2251-2266.	3.3	115

#	Article	IF	CITATIONS
19	A statistical look at plasmaspheric drainage plumes. Journal of Geophysical Research, 2008, 113, .	3.3	110
20	Energetic electron precipitation during high-speed solar wind stream driven storms. Journal of Geophysical Research, $2011,116,116$	3.3	110
21	MultistepDstdevelopment and ring current composition changes during the 4-6 June 1991 magnetic storm. Journal of Geophysical Research, 2002, 107, SMP 33-1-SMP 33-22.	3.3	108
22	Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 2011 , 38 , $n/a-n/a$.	1.5	105
23	The "calm before the storm―in CIR/magnetosphere interactions: Occurrence statistics, solar wind statistics, and magnetospheric preconditioning. Journal of Geophysical Research, 2006, 111, .	3.3	104
24	A new fourâ€plasma categorization scheme for the solar wind. Journal of Geophysical Research: Space Physics, 2015, 120, 70-100.	0.8	95
25	SPECTRAL SCALING LAWS IN MAGNETOHYDRODYNAMIC TURBULENCE SIMULATIONS AND IN THE SOLAR WIND. Astrophysical Journal Letters, 2011, 741, L19.	3.0	92
26	SPECTRAL INDICES FOR MULTI-DIMENSIONAL INTERPLANETARY TURBULENCE AT 1 AU. Astrophysical Journal, 2009, 692, 684-693.	1.6	89
27	Solar wind turbulence and shear: A superposedâ €e poch analysis of corotating interaction regions at 1 AU. Journal of Geophysical Research, 2010, 115, .	3.3	89
28	Effect of plasmaspheric drainage plumes on solar-wind/magnetosphere coupling. Geophysical Research Letters, 2006, 33, .	1.5	88
29	Relativisticâ€electron dropouts and recovery: A superposed epoch study of the magnetosphere and the solar wind. Journal of Geophysical Research, 2009, 114, .	3.3	85
30	Alfvén-cyclotron fluctuations: Linear Vlasov theory. Journal of Geophysical Research, 2004, 109, .	3.3	84
31	The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles. Journal of Geophysical Research, 2008, 113 , .	3.3	83
32	Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind. Physical Review Letters, 2010, 105, 111102.	2.9	83
33	The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin?. Journal of Geophysical Research, 1997, 102, 22089-22097.	3.3	80
34	The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties. Journal of Geophysical Research, 2012, 117 , .	3.3	80
35	CPIC: A Curvilinear Particle-in-Cell Code for Plasma–Material Interaction Studies. IEEE Transactions on Plasma Science, 2013, 41, 3577-3587.	0.6	80
36	Nine Outstanding Questions of Solar Wind Physics. Journal of Geophysical Research: Space Physics, 2020, 125, e2018JA026005.	0.8	77

#	Article	IF	CITATIONS
37	The fate of the outer plasmasphere. Geophysical Research Letters, 1997, 24, 365-368.	1.5	74
38	Periodic magnetospheric substorms and their relationship with solar wind variations. Journal of Geophysical Research, 2003, 108 , .	3.3	73
39	A KINETIC ALFVÉN WAVE CASCADE SUBJECT TO COLLISIONLESS DAMPING CANNOT REACH ELECTRON SCALE IN THE SOLAR WIND AT 1 AU. Astrophysical Journal, 2010, 712, 685-691.	ES _{1.6}	73
40	On the variations of the solar wind magnetic field about the Parker spiral direction. Journal of Geophysical Research, 2010, 115 , .	3.3	73
41	Magnetosphere preconditioning under northward IMF: Evidence from the study of coronal mass ejection and corotating interaction region geoeffectiveness. Journal of Geophysical Research, 2006, 111, .	3.3	72
42	The solar wind electric field does not control the dayside reconnection rate. Journal of Geophysical Research: Space Physics, 2014, 119, 751-760.	0.8	72
43	Properties of asymmetric magnetic reconnection. Physics of Plasmas, 2008, 15, .	0.7	71
44	The Earth's Magnetosphere: A Systems Science Overview and Assessment. Surveys in Geophysics, 2018, 39, 817-859.	2.1	70
45	The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research: Space Physics, 2013, 118, 1500-1513.	0.8	68
46	Variability of the ring current source population. Geophysical Research Letters, 1998, 25, 3481-3484.	1.5	67
47	The reconnection of magnetic fields between plasmas with different densities: Scaling relations. Physics of Plasmas, 2007, 14, .	0.7	64
48	Magnetic field at geosynchronous orbit during highâ€speed streamâ€driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt. Journal of Geophysical Research, 2010, 115, .	3.3	64
49	The plasma structure of coronal hole solar wind: Origins and evolution. Journal of Geophysical Research: Space Physics, 2016, 121, 5055-5087.	0.8	64
50	Estimating the effects of ionospheric plasma on solar wind/magnetosphere coupling via mass loading of dayside reconnection: lonâ€plasmaâ€sheet oxygen, plasmaspheric drainage plumes, and the plasma cloak. Journal of Geophysical Research: Space Physics, 2013, 118, 5695-5719.	0.8	63
51	Measurements of early and late time plasmasphere refilling as observed from geosynchronous orbit. Journal of Geophysical Research, 1999, 104, 14691-14704.	3.3	61
52	Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?. Geophysical Research Letters, 2007, 34, .	1.5	61
53	Physical improvements to the solar wind reconnection control function for the Earth's magnetosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 2113-2121.	0.8	61
54	Scaling of asymmetric reconnection in compressible plasmas. Physics of Plasmas, 2010, 17, .	0.7	58

#	Article	IF	CITATIONS
55	Magnetospheric dynamics and mass flow during the November 1993 storm. Journal of Geophysical Research, 1998, 103, 26373-26394.	3.3	57
56	Superposed epoch analysis of highâ€speedâ€stream effects at geosynchronous orbit: Hot plasma, cold plasma, and the solar wind. Journal of Geophysical Research, 2008, 113, .	3.3	56
57	Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere. Journal of Geophysical Research, 2009, 114, .	3.3	54
58	Substorm occurrence rates, substorm recurrence times, and solar wind structure. Journal of Geophysical Research: Space Physics, 2017, 122, 2973-2998.	0.8	54
59	Classification of Solar Wind With Machine Learning. Journal of Geophysical Research: Space Physics, 2017, 122, 10,910.	0.8	54
60	Plasmaspheric material at the reconnecting magnetopause. Journal of Geophysical Research, 2000, 105, 7591-7600.	3.3	49
61	Asymmetry of magnetosheath flows and magnetopause shape during low Alfvén Mach number solar wind. Journal of Geophysical Research: Space Physics, 2013, 118, 1089-1100.	0.8	49
62	A linkage between polar patches and plasmaspheric drainage plumes. Geophysical Research Letters, 2001, 28, 111-113.	1.5	45
63	Magnetosphere response to highâ€speed solar wind streams: A comparison of weak and strong driving and the importance of extended periods of fast solar wind. Journal of Geophysical Research, 2012, 117, .	3.3	44
64	An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit. Space Weather, 2015, 13, 233-249.	1.3	44
65	Eddy viscosity and flow properties of the solar wind: Co-rotating interaction regions, coronal-mass-ejection sheaths, and solar-wind/magnetosphere coupling. Physics of Plasmas, 2006, 13, 056505.	0.7	43
66	Is the <i>Dst</i> Index Sufficient to Define All Geospace Storms?. Journal of Geophysical Research: Space Physics, 2017, 122, 11,543.	0.8	43
67	The simulation of plasma double-layer structures in two dimensions. Journal of Plasma Physics, 1983, 29, 45-84.	0.7	42
68	An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions. Space Weather, 2016, 14, 511-523.	1.3	42
69	The superdense plasma sheet in the magnetosphere during high-speed-stream-driven storms: Plasma transport timescales. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 1045-1058.	0.6	41
70	Canonical correlation analysis of the combined solar wind and geomagnetic index data sets. Journal of Geophysical Research: Space Physics, 2014, 119, 5364-5381.	0.8	41
71	Electron loss rates from the outer radiation belt caused by the filling of the outer plasmasphere: The calm before the storm. Journal of Geophysical Research, 2009, 114, .	3.3	40
72	Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar windâ€driven magnetosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 4307-4334.	0.8	40

#	Article	IF	Citations
73	The effect of sudden wind shear on the Earth's magnetosphere: Statistics of wind shear events and CCMC simulations of magnetotail disconnections. Journal of Geophysical Research, 2012, 117, .	3.3	38
74	The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 177, 2-11.	0.6	38
75	A comprehensive survey of plasmasphere refilling at geosynchronous orbit. Journal of Geophysical Research, 2001, 106, 25615-25629.	3.3	37
76	What magnetospheric and ionospheric researchers should know about the solar wind. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 204, 105271.	0.6	35
77	Solar wind density as a driver for the ring current in mild storms. Geophysical Research Letters, 1999, 26, 1797-1800.	1.5	31
78	A densityâ€ŧemperature description of the outer electron radiation belt during geomagnetic storms. Journal of Geophysical Research, 2010, 115, .	3.3	31
79	Entropy mapping of the outer electron radiation belt between the magnetotail and geosynchronous orbit. Journal of Geophysical Research, 2011, 116 , n/a - n/a .	3.3	31
80	Longâ€ived plasmaspheric drainage plumes: Where does the plasma come from?. Journal of Geophysical Research: Space Physics, 2014, 119, 6496-6520.	0.8	31
81	Quiescent Discrete Auroral Arcs: A Review of Magnetospheric Generator Mechanisms. Space Science Reviews, 2020, 216, 1.	3.7	31
82	Inner edge of the electron plasma sheet: Empirical models of boundary location. Journal of Geophysical Research, 1999, 104, 22679-22693.	3.3	30
83	NO EVIDENCE FOR HEATING OF THE SOLAR WIND AT STRONG CURRENT SHEETS. Astrophysical Journal Letters, 2011, 739, L61.	3.0	30
84	Physicsâ€based solar wind driver functions for the magnetosphere: Combining the reconnectionâ€coupled MHD generator with the viscous interaction. Journal of Geophysical Research: Space Physics, 2013, 118, 7119-7150.	0.8	30
85	How important are the alphaâ€proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere?. Journal of Geophysical Research: Space Physics, 2014, 119, 5210-5219.	0.8	30
86	A study of the stochastic energization of charged particles with and without synchrotron energy loss. Astrophysical Journal, 1986, 308, 929.	1.6	30
87	The trailing edges of highâ€speed streams at 1 AU. Journal of Geophysical Research: Space Physics, 2016, 121, 6107-6140.	0.8	29
88	Plasmaspheric material on high-latitude open field lines. Journal of Geophysical Research, 2001, 106, 6085-6095.	3.3	28
89	Timeâ€Integral Correlations of Multiple Variables With the Relativisticâ€Electron Flux at Geosynchronous Orbit: The Strong Roles of Substormâ€Injected Electrons and the Ion Plasma Sheet. Journal of Geophysical Research: Space Physics, 2017, 122, 11,961.	0.8	28
90	Magnetic pumping of particles in the outer Jovian magnetosphere. Journal of Geophysical Research, 1981, 86, 3481-3495.	3.3	27

#	Article	IF	Citations
91	Time dependence of substorm recurrence: An information-theoretic analysis. Journal of Geophysical Research, 1996, 101, 15359-15369.	3.3	27
92	Influence of epoch time selection on the results of superposed epoch analysis using ACE and MPA data. Journal of Geophysical Research, 2008, 113 , .	3.3	27
93	On the heating of the outer radiation belt to produce high fluxes of relativistic electrons: Measured heating rates at geosynchronous orbit for highâ€speed streamâ€driven storms. Journal of Geophysical Research, 2010, 115, .	3.3	27
94	Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU. Journal of Geophysical Research, 2012, 117, .	3.3	27
95	Some Properties of the Solar Wind Turbulence at 1 AU Statistically Examined in the Different Types of Solar Wind Plasma. Journal of Geophysical Research: Space Physics, 2019, 124, 2406-2424.	0.8	27
96	The impact of cold electrons and cold ions in magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 220, 105599.	0.6	27
97	The dc electrical coupling of flow vortices and flow channels in the magnetosphere to the resistive ionosphere. Journal of Geophysical Research, 2001, 106, 28967-28994.	3.3	26
98	Damping of longâ€wavelength kinetic Alfvén fluctuations: Linear theory. Journal of Geophysical Research, 2008, 113, .	3.3	25
99	Tracing solar wind plasma entry into the magnetosphere using ionâ€toâ€electron temperature ratio. Geophysical Research Letters, 2009, 36, .	1.5	24
100	Preface: Unsolved problems of magnetospheric physics. Journal of Geophysical Research: Space Physics, 2016, 121, 10,783.	0.8	23
101	Systems science of the magnetosphere: Creating indices of substorm activity, of the substormâ€injected electron population, and of the electron radiation belt. Journal of Geophysical Research: Space Physics, 2017, 122, 10,012.	0.8	23
102	High-Speed Solar Wind Streams: A Call for Key Research. Eos, 2008, 89, 62.	0.1	22
103	On shear viscosity and the Reynolds number of magnetohydrodynamic turbulence in collisionless magnetized plasmas: Coulomb collisions, Landau damping, and Bohm diffusion. Physics of Plasmas, 2009, 16, .	0.7	22
104	A survey of the anisotropy of the outer electron radiation belt during high-speed-stream-driven storms. Journal of Geophysical Research, 2011, 116, .	3.3	22
105	On the Origins of the Intercorrelations Between Solar Wind Variables. Journal of Geophysical Research: Space Physics, 2018, 123, 20-29.	0.8	22
106	Evolution of mass density and O+ concentration at geostationary orbit during storm and quiet events. Journal of Geophysical Research: Space Physics, 2014, 119, 6417-6431.	0.8	21
107	Can an electron gun solve the outstanding problem of magnetosphereâ€ionosphere connectivity?. Journal of Geophysical Research: Space Physics, 2016, 121, 6769-6773.	0.8	21
108	The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during highâ€speed streamâ€driven storms. Journal of Geophysical Research: Space Physics, 2016, 121, 5449-5488.	0.8	21

#	Article	IF	Citations
109	Active Experiments in Space: The Future. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	21
110	Particle acceleration in the dynamic magnetotail. Physics of Plasmas, 2000, 7, 2149-2156.	0.7	20
111	The differences between storms driven by helmet streamer CIRs and storms driven by pseudostreamer CIRs. Journal of Geophysical Research: Space Physics, 2013, 118, 5506-5521.	0.8	20
112	On the Motion of the Heliospheric Magnetic Structure Through the Solar Wind Plasma. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027377.	0.8	20
113	The Magnetic Structure of the Solar Wind: Ionic Composition and the Electron Strahl. Geophysical Research Letters, 2020, 47, e2019GL084586.	1.5	20
114	A statistical comparison of hot-ion properties at geosynchronous orbit during intense and moderate geomagnetic storms at solar maximum and minimum. Journal of Geophysical Research, 2006, 111, .	3.3	19
115	Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?. Journal of Geophysical Research: Space Physics, 2015, 120, 3647-3664.	0.8	19
116	Exploring the effect of current sheet thickness on the highâ€frequency Fourier spectrum breakpoint of the solar wind. Journal of Geophysical Research: Space Physics, 2015, 120, 9256-9268.	0.8	19
117	Future beam experiments in the magnetosphere with plasma contactors: The electron collection and ion emission routes. Journal of Geophysical Research: Space Physics, 2015, 120, 3588-3602.	0.8	19
118	Is Our Understanding of Solar-Wind/Magnetosphere Coupling Satisfactory?. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	19
119	The role of compressibility in energy release by magnetic reconnection. Physics of Plasmas, 2012, 19, .	0.7	18
120	Compressional perturbations of the dayside magnetosphere during highâ€speedâ€streamâ€driven geomagnetic storms. Journal of Geophysical Research: Space Physics, 2016, 121, 4569-4589.	0.8	18
121	Magnetic pumping by magnetosonic waves in the presence of noncompressive electromagnetic fluctuations. Physics of Fluids, 1986, 29, 3245.	1.4	17
122	The electrostatic two-stream instability driven by slab-shaped and cylindrical beams injected into plasmas. Physics of Fluids, 1988, 31, 857.	1.4	16
123	Optical Measurements of the Fine Structure of Auroral Arcs. Geophysical Monograph Series, 2013, , 25-30.	0.1	16
124	Magnetic Connectivity in the Corona as a Source of Structure in the Solar Wind. Journal of Geophysical Research: Space Physics, 2019, 124, 32-49.	0.8	16
125	Plasma and Magnetic-Field Structure of the Solar Wind at Inertial-Range Scale Sizes Discerned From Statistical Examinations of the Time-Series Measurements. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	15
126	The freestream turbulence effect in solar-wind/magnetosphere coupling: Analysis through the solar cycle and for various types of solar wind. Geophysical Monograph Series, 2006, , 59-76.	0.1	14

#	Article	IF	CITATIONS
127	Electron-ion Coulomb scattering and the electron Landau damping of Alfv \tilde{A} ©n waves in the solar wind. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	14
128	Exploration of a Composite Index to Describe Magnetospheric Activity: Reduction of the Magnetospheric State Vector to a Single Scalar. Journal of Geophysical Research: Space Physics, 2018, 123, 7384-7412.	0.8	14
129	Compacting the description of a time-dependent multivariable system and its multivariable driver by reducing the state vectors to aggregate scalars: the Earth's solar-wind-driven magnetosphere. Nonlinear Processes in Geophysics, 2019, 26, 429-443.	0.6	14
130	On the Fourier Contribution of Strong Current Sheets to the Highâ€Frequency Magnetic Power SpectralDensity of the Solar Wind. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027307.	0.8	14
131	No evidence for the localized heating of solar wind protons at intense velocity shear zones. Journal of Geophysical Research: Space Physics, 2014, 119, 1455-1462.	0.8	13
132	Patch Size Evolution During Pulsating Aurora. Journal of Geophysical Research: Space Physics, 2019, 124, 4725-4738.	0.8	13
133	Outstanding questions in magnetospheric plasma physics: The pollenzo view. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208, 105377.	0.6	13
134	Feedback of the Magnetosphere. Science, 2014, 343, 1086-1087.	6.0	12
135	Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit. Journal of Geophysical Research: Space Physics, 2014, 119, 1814-1826.	0.8	12
136	Breaking of the first adiabatic invariants of charged particles in time-dependent magnetic fields: Computer simulations and theory. Physical Review A, 1991, 43, 5605-5627.	1.0	11
137	Relationship between the durations of jumps in solar wind time series and the frequency of the spectral break. Journal of Geophysical Research: Space Physics, 2016, 121, 1817-1838.	0.8	11
138	The response of the inner magnetosphere to the trailing edges of highâ€speed solarâ€wind streams. Journal of Geophysical Research: Space Physics, 2017, 122, 501-516.	0.8	11
139	Spacecraftâ€Charging Mitigation of a Highâ€Power Electron Beam Emitted by a Magnetospheric Spacecraft: Simple Theoretical Model for the Transient of the Spacecraft Potential. Journal of Geophysical Research: Space Physics, 2018, 123, 6424-6442.	0.8	11
140	Solving the auroral-arc-generator question by using an electron beam to unambiguously connect critical magnetospheric measurements to auroral images. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 206, 105310.	0.6	11
141	Evolution of the magnetotail energetic-electron population during high-speed-stream-driven storms: Evidence for the leakage of the outer electron radiation belt into the Earth's magnetotail. Journal of Geophysical Research, 2011, 116, $n/a-n/a$.	3.3	10
142	A Statistical Analysis of the Fluctuations in the Upstream and Downstream Plasmas of 109 Strongâ€Compression Interplanetary Shocks at 1ÂAU. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027518.	0.8	10
143	Exploring the Properties of the Electron Strahl at 1 AU as an Indicator of the Quality of the Magnetic Connection Between the Earth and the Sun. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	10
144	Plasmaspheric observations at geosynchronous orbit. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 1185-1197.	0.6	9

#	Article	IF	Citations
145	Observations and modeling of magnetic flux tube refilling of the plasmasphere at geosynchronous orbit. Journal of Geophysical Research: Space Physics, 2014, 119, 9246-9255.	0.8	9
146	SAMI3 Simulations of a Persistent Plasmasphere Plume. Geophysical Research Letters, 2018, 45, 3374-3381.	1.5	9
147	A survey of geomagnetic and plasma time lags in the solar-wind-driven magnetosphere of earth. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208, 105376.	0.6	9
148	The morphological evolution and internal convection of E×B-drifting plasma clouds: Theory, dielectric-in-cell simulations, and N-body dielectric simulations. Physics of Plasmas, 1998, 5, 3195-3223.	0.7	8
149	Nonequilibrium Phenomena in the Magnetosphere. , 2005, , 3-22.		8
150	Electrical conductivity channels in the atmosphere produced by relativistic-electron microbursts from the magnetosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 155, 22-26.	0.6	8
151	A Mission Concept to Determine the Magnetospheric Causes of Aurora. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	8
152	The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During Highâ€5peed Streamâ€Driven Storms. Journal of Geophysical Research: Space Physics, 2017, 122, 12,072.	0.8	7
153	The Electron Structure of the Solar Wind. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	7
154	Solar-Wind Structures That Are Not Destroyed by the Action of Solar-Wind Turbulence. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	7
155	Quantifying the non-linear dependence of energetic electron fluxes in the Earth's radiation belts with radial diffusion drivers. Annales Geophysicae, 2022, 40, 37-53.	0.6	7
156	The Strong-Double-Layer Model of Auroral Arcs: an Assessment. Geophysical Monograph Series, 2013, , 113-120.	0.1	6
157	The Direct Production of Ion Conics by Plasma Double Layers. Geophysical Monograph Series, 0, , 317-322.	0.1	6
158	The Compression of the Heliospheric Magnetic Structure by Interplanetary Shocks: Is the Structure at 1AU a Manifestation of Solar-Wind Turbulence or Is It Fossil Structure From the Sun?. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	6
159	On the Saturation (or Not) of Geomagnetic Indices. Frontiers in Astronomy and Space Sciences, 2021, 8,	1.1	6
160	Noise, Regression Dilution Bias, and Solar-Wind/Magnetosphere Coupling Studies. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	6
161	The magnetic pumping of plasmas with sawtooth waveforms. Physics of Fluids B, 1990, 2, 1114-1127.	1.7	5
162	Testing the necessity of transient spikes in the storm time ring current drivers. Journal of Geophysical Research, 2011, 116, $n/a-n/a$.	3.3	5

#	Article	IF	Citations
163	Looking for Evidence of Windâ€Shear Disconnections of the Earth's Magnetotail: GEOTAIL Measurements and LFM MHD Simulations. Journal of Geophysical Research: Space Physics, 2018, 123, 5538-5560.	0.8	5
164	Relativity and the Solar Wind: The Maxwell-Equation Origins of the Solar-Wind Motional Electric Field. Journal of Electromagnetic Analysis and Applications, 2016, 08, 133-151.	0.1	5
165	Editorial: Topical Collection on Auroral Physics. Space Science Reviews, 2021, 217, 1.	3.7	4
166	Pitch-Angle Diffusion in the Earth's Magnetosphere Organized by the Mozer-Transformed Coordinate System. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	4
167	The Triple Dusk-Dawn Aberration of the Solar Wind at Earth. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	4
168	Do Impulsive Solar-Energetic-Electron (SEE) Events Drive High-Voltage Charging Events on the Nightside of the Moon?. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	3
169	The Need for a System Science Approach to Global Magnetospheric Models. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	3
170	Induced absorption of extraordinary (Z-mode) waves via electron pumping. Physics of Fluids, 1988, 31, 700.	1.4	2
171	First optical observations of energetic electron precipitation at 4278 Ã caused by a powerful VLF transmitter. Geophysical Research Letters, 2014, 41, 2237-2242.	1.5	2
172	Substorm Current Wedge: Energy Conversion and Current Diversion. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028073.	0.8	2
173	Editorial: Active Experiments in Space: Past, Present, and Future. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	2
174	Magnetospheric Plasma Systems Science and Solar Wind Plasma Systems Science: The Plasma-Wave Interactions of Multiple Particle Populations. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	2
175	Charge-Exchange Byproduct Cold Protons in the Earth's Magnetosphere. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	2
176	Heliospheric Structure Analyzer (HSA): A Simple 1-AU Mission Concept Focusing on Large-Geometric-Factor Measurements. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	2
177	Grand Challenge for Space Physics. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	1
178	Spacecraft-charging Mitigation of a High-Power Electron Beam Emitted by a Magnetospheric Spacecraft. , 2017, , .		0
179	ION Emission Energetics From a Positively Biased Hollow Cathode Contactor. , 2017, , .		0
180	Some Similarities and Differences Between the Observed Alfvénic Fluctuations in the Fast Solar Wind and Navier–Stokes Turbulence. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	0

#	Article	IF	CITATIONS
181	Editorial: The Role of Turbulence in the Solar Wind, Magnetosphere, Ionosphere Dynamics. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	0
182	Is the Solar Wind Electron Strahl a Seed Population for the Earth's Electron Radiation Belt?. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	0