Louis Jrm Maes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3508590/publications.pdf

Version: 2024-02-01

270 papers 9,450 citations

45 h-index 82 g-index

279 all docs

279 docs citations

times ranked

279

11859 citing authors

#	Article	IF	CITATIONS
1	Anti-infective potential of natural products: How to develop a stronger in vitro †proof-of-conceptâ€. Journal of Ethnopharmacology, 2006, 106, 290-302.	4.1	1,142
2	Quorum Sensing Inhibitors Increase the Susceptibility of Bacterial Biofilms to Antibiotics In Vitro and In Vivo. Antimicrobial Agents and Chemotherapy, 2011, 55, 2655-2661.	3.2	459
3	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
4	In Vitro Susceptibilities of <i>Leishmania donovani</i> Promastigote and Amastigote Stages to Antileishmanial Reference Drugs: Practical Relevance of Stage-Specific Differences. Antimicrobial Agents and Chemotherapy, 2009, 53, 3855-3859.	3.2	204
5	Leishmania–macrophage interactions: Insights into the redox biology. Free Radical Biology and Medicine, 2011, 51, 337-351.	2.9	201
6	Extended Structure–Activity Relationship and Pharmacokinetic Investigation of (4-Quinolinoyl)glycyl-2-cyanopyrrolidine Inhibitors of Fibroblast Activation Protein (FAP). Journal of Medicinal Chemistry, 2014, 57, 3053-3074.	6.4	169
7	Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold. ACS Medicinal Chemistry Letters, 2013, 4, 491-496.	2.8	153
8	Advancing Drug Innovation for Neglected Diseasesâ€"Criteria for Lead Progression. PLoS Neglected Tropical Diseases, 2009, 3, e440.	3.0	152
9	Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. ELife, 2016, 5, .	6.0	147
10	Antimalarial, Antitrypanosomal, and Antileishmanial Activities and Cytotoxicity of Bis(9-amino-6-chloro-2-methoxyacridines):  Influence of the Linker. Journal of Medicinal Chemistry, 2000, 43, 2646-2654.	6.4	131
11	Synthesis, Cytotoxicity, and Antiplasmodial and Antitrypanosomal Activity of New Neocryptolepine Derivatives. Journal of Medicinal Chemistry, 2002, 45, 3497-3508.	6.4	129
12	A Prodrug Form of a Plasmodium falciparum Glutathione Reductase Inhibitor Conjugated with a 4-Anilinoquinoline. Journal of Medicinal Chemistry, 2001, 44, 4268-4276.	6.4	128
13	Synthesis and in Vitro and in Vivo Antimalarial Activity of N-(7-Chloro-4-quinolyl)-1,4-bis(3-aminopropyl)piperazine Derivatives. Journal of Medicinal Chemistry, 2003, 46, 542-557.	6.4	113
14	Structure-Activity Relationship of Cinnamaldehyde Analogs as Inhibitors of Al-2 Based Quorum Sensing and Their Effect on Virulence of Vibrio spp. PLoS ONE, 2011, 6, e16084.	2.5	107
15	Antiparasitic Activity of Some Xanthones and Biflavonoids from the Root Bark of Garcinia livingstonei#. Journal of Natural Products, 2006, 69, 369-372.	3.0	100
16	Plant Substances as Anti-HIV Agents Selected According to Their Putative Mechanism of Action⊥. Journal of Natural Products, 2004, 67, 284-293.	3.0	94
17	Plant-Derived Leading Compounds for Chemotherapy of Human Immunodefiency Virus (HIV) Infection – An Update (1998 – 2007). Planta Medica, 2008, 74, 1323-1337.	1.3	91
18	Essential oil from Chenopodium ambrosioides and main components: Activity against Leishmania, their mitochondria and other microorganisms. Experimental Parasitology, 2014, 136, 20-26.	1,2	91

#	Article	IF	CITATIONS
19	In Vitro and In Vivo Activities of a Triterpenoid Saponin Extract (PX-6518) from the Plant Maesa balansae against Visceral Leishmania Species. Antimicrobial Agents and Chemotherapy, 2004, 48, 130-136.	3.2	90
20	In Vitro Sensitivity Testing of <i>Leishmania</i> Clinical Field Isolates: Preconditioning of Promastigotes Enhances Infectivity for Macrophage Host Cells. Antimicrobial Agents and Chemotherapy, 2009, 53, 5197-5203.	3.2	80
21	Discovery of Novel, Drug-Like Ferroptosis Inhibitors with in Vivo Efficacy. Journal of Medicinal Chemistry, 2018, 61, 10126-10140.	6.4	80
22	Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes. PLoS ONE, 2016, 11, e0154101.	2.5	80
23	In Vitro and in Vivo Anti-Leishmanial Activity of Triterpenoid Saponins Isolated from Maesa balansae and Some Chemical Derivatives. Journal of Medicinal Chemistry, 2005, 48, 32-37.	6.4	75
24	Linking In Vitro and In Vivo Survival of Clinical Leishmania donovani Strains. PLoS ONE, 2010, 5, e12211.	2.5	70
25	Synthesis and Antiplasmodial Activity of Aminoalkylamino-Substituted Neocryptolepine Derivatives. Journal of Medicinal Chemistry, 2009, 52, 2979-2988.	6.4	69
26	Antimalarial versus Cytotoxic Properties of Dual Drugs Derived From 4-Aminoquinolines and Mannich Bases: Interaction with DNA. Journal of Medicinal Chemistry, 2010, 53, 3214-3226.	6.4	69
27	Structure–activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues. Bioorganic and Medicinal Chemistry, 2009, 17, 7209-7217.	3.0	66
28	Antitrypanosomal Activity of 1,2-Dihydroquinolin-6-ols and Their Ester Derivatives. Journal of Medicinal Chemistry, 2010, 53, 966-982.	6.4	66
29	Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract. Journal of Ethnopharmacology, 2010, 131, 10-16.	4.1	61
30	In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region. BMC Complementary and Alternative Medicine, 2012, 12, 49.	3.7	61
31	Phytochemical, Antimicrobial and Antiprotozoal Evaluation of Garcinia Mangostana Pericarp and α-Mangostin, Its Major Xanthone Derivative. Molecules, 2013, 18, 10599-10608.	3.8	61
32	Synthesis and in Vitro and in Vivo Antimalarial Activity of New 4-Anilinoquinolines. Journal of Medicinal Chemistry, 2001, 44, 2827-2833.	6.4	58
33	<i>In Vitro</i> activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytotherapy Research, 2010, 24, 1322-1328.	5.8	57
34	Drug to Genome to Drug: Discovery of New Antiplasmodial Compounds. Journal of Medicinal Chemistry, 2011, 54, 3222-3240.	6.4	57
35	Repurposing of the Open Access Malaria Box for Kinetoplastid Diseases Identifies Novel Active Scaffolds against Trypanosomatids. Journal of Biomolecular Screening, 2015, 20, 634-645.	2.6	57
36	Antiplasmodial and other constituents from four Indonesian Garcinia spp Phytochemistry, 2009, 70, 907-912.	2.9	56

#	Article	IF	CITATIONS
37	Reverse Fosmidomycin Derivatives against the Antimalarial Drug Target IspC (Dxr). Journal of Medicinal Chemistry, 2011, 54, 6796-6802.	6.4	55
38	Study of the in Vitro Antiplasmodial, Antileishmanial and Antitrypanosomal Activities of Medicinal Plants from Saudi Arabia. Molecules, 2012, 17, 11379-11390.	3.8	53
39	Novel Amino-pyrazole Ureas with Potent In Vitro and In Vivo Antileishmanial Activity. Journal of Medicinal Chemistry, 2015, 58, 9615-9624.	6.4	52
40	Antimonial Resistance in Leishmania donovani Is Associated with Increased In Vivo Parasite Burden. PLoS ONE, 2011, 6, e23120.	2.5	52
41	Integrated Dataset of Screening Hits against Multiple Neglected Disease Pathogens. PLoS Neglected Tropical Diseases, 2011, 5, e1412.	3.0	50
42	Catechol Pyrazolinones as Trypanocidals: Fragment-Based Design, Synthesis, and Pharmacological Evaluation of Nanomolar Inhibitors of Trypanosomal Phosphodiesterase B1. Journal of Medicinal Chemistry, 2012, 55, 8745-8756.	6.4	50
43	Synthesis and evaluation of the quorum sensing inhibitory effect of substituted triazolyldihydrofuranones. Bioorganic and Medicinal Chemistry, 2012, 20, 4737-4743.	3.0	50
44	Validation of a simple resazurin-based promastigote assay for the routine monitoring of miltefosine susceptibility in clinical isolates of Leishmania donovani. Parasitology Research, 2013, 112, 825-828.	1.6	50
45	Antiplasmodial activity of (I-3,II-3)-biflavonoids and other constituents from Ormocarpum kirkii. Phytochemistry, 2010, 71, 785-791.	2.9	49
46	Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat late-stage sleeping sickness. Nature Communications, 2019, 10, 5564.	12.8	49
47	In vitro anti-microbial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L and Artemisia absinthium L. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 615-618.	1.6	48
48	In vitro antimicrobial assessment of Cuban propolis extracts. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 978-984.	1.6	48
49	A new quantitative in vitro microculture method for Giardia duodenalis trophozoites. Journal of Microbiological Methods, 2007, 71, 101-106.	1.6	47
50	7-Substituted 2-Nitro-5,6-dihydroimidazo[2,1- <i>b</i>][1,3]oxazines: Novel Antitubercular Agents Lead to a New Preclinical Candidate for Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2017, 60, 4212-4233.	6.4	47
51	Comparative Activities of the Triterpene Saponin Maesabalide III and Liposomal Amphotericin B (AmBisome) against Leishmania donovani in Hamsters. Antimicrobial Agents and Chemotherapy, 2004, 48, 2056-2060.	3.2	46
52	Synthesis and Evaluation of \hat{l}_{\pm} -Halogenated Analogues of 3-(Acetylhydroxyamino) propylphosphonic Acid (FR900098) as Antimalarials. Journal of Medicinal Chemistry, 2010, 53, 5342-5346.	6.4	46
53	In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitology Research, 2014, 113, 2925-2932.	1.6	46
54	In Vitro Evaluation of Portuguese Propolis and Floral Sources for Antiprotozoal, Antibacterial and Antifungal Activity. Phytotherapy Research, 2014, 28, 437-443.	5.8	46

#	Article	IF	CITATIONS
55	Repositioning Antitubercular 6-Nitro-2,3-dihydroimidazo[2,1-⟨i⟩b⟨/i⟩][1,3]oxazoles for Neglected Tropical Diseases: Structure–Activity Studies on a Preclinical Candidate for Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2016, 59, 2530-2550.	6.4	46
56	Screening of Agelasine D and Analogs for Inhibitory Activity against Pathogenic Protozoa; Identification of Hits for Visceral Leishmaniasis and Chagas Disease. Molecules, 2009, 14, 279-288.	3.8	45
57	Trypanothione reductase inhibition/trypanocidal activity relationships in a 1,4-bis(3-aminopropyl)piperazine series. Bioorganic and Medicinal Chemistry, 2000, 8, 95-103.	3.0	44
58	Antiplasmodial Activity and Cytotoxicity of Bis-, Tris-, and Tetraquinolines with Linear or Cyclic Amino Linkers. Journal of Medicinal Chemistry, 2001, 44, 1658-1665.	6.4	43
59	Experimental Induction of Paromomycin Resistance in Antimony-Resistant Strains of L. donovani: Outcome Dependent on In Vitro Selection Protocol. PLoS Neglected Tropical Diseases, 2012, 6, e1664.	3.0	42
60	Development of $(6 < i > R < i>)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 < i > H < i>-imidazo[2,1-b < i>][1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2018, 61, 2329-2352.$	6.4	42
61	Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity. European Journal of Medicinal Chemistry, 2019, 164, 689-705.	5. 5	40
62	Potent and specific inhibitors of trypanothione reductase from Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 2001, 9, 837-846.	3.0	39
63	Optimization and Characterization of a Galleria mellonella Larval Infection Model for Virulence Studies and the Evaluation of Therapeutics Against Streptococcus pneumoniae. Frontiers in Microbiology, 2019, 10, 311.	3.5	38
64	Structure–Activity Relationships and Blood Distribution of Antiplasmodial Aminopeptidase-1 Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 10909-10917.	6.4	37
65	In vitro CYP-mediated drug metabolism in the zebrafish (embryo) using human reference compounds. Toxicology in Vitro, 2017, 42, 329-336.	2.4	37
66	Discovery of Novel 7-Aryl 7-Deazapurine 3′-Deoxy-ribofuranosyl Nucleosides with Potent Activity against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2018, 61, 9287-9300.	6.4	37
67	2-Amino diphenylsulfides as inhibitors of trypanothione reductase: modification of the side chain. Bioorganic and Medicinal Chemistry, 1996, 4, 891-899.	3.0	36
68	New pentacyclic triterpene saponins with strong anti-leishmanial activity from the leaves of Maesa balansae. Tetrahedron, 2004, 60, 219-228.	1.9	36
69	Evaluation of Nucleoside Hydrolase Inhibitors for Treatment of African Trypanosomiasis. Antimicrobial Agents and Chemotherapy, 2010, 54, 1900-1908.	3.2	35
70	In Vitro Antiprotozoal Activity of Triterpenoid Constituents of Kleinia odora Growing in Saudi Arabia. Molecules, 2013, 18, 9207-9218.	3.8	35
71	<i>In Vivo</i> Selection of Paromomycin and Miltefosine Resistance in Leishmania donovani and L. infantum in a Syrian Hamster Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 4714-4718.	3.2	35
72	Synthesis and Bioactivity of Î ² -Substituted Fosmidomycin Analogues Targeting 1-Deoxy- <scp>d</scp> -xylulose-5-phosphate Reductoisomerase. Journal of Medicinal Chemistry, 2015, 58, 2988-3001.	6.4	34

#	Article	IF	CITATIONS
73	Evidence of a drug-specific impact of experimentally selected paromomycin and miltefosine resistance on parasite fitness in <i>Leishmania infantum</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 1914-1921.	3.0	34
74	Targeting a Subpocket in <i>Trypanosoma brucei</i> Phosphodiesterase B1 (TbrPDEB1) Enables the Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity. Journal of Medicinal Chemistry, 2018, 61, 3870-3888.	6.4	34
75	Phytochemical and biological investigations of Elaeodendron schlechteranum. Journal of Ethnopharmacology, 2010, 129, 319-326.	4.1	33
76	C6–O-alkylated 7-deazainosine nucleoside analogues: Discovery of potent and selective anti-sleeping sickness agents. European Journal of Medicinal Chemistry, 2020, 188, 112018.	5.5	33
77	Evaluation of the <i>In Vitro </i> Antiplasmodial, Antileishmanial, and Antitrypanosomal Activity of Medicinal Plants Used in Saudi and Yemeni Traditional Medicine. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-7.	1.2	32
78	In Vitro Antiprotozoal and Cytotoxic Activity of Ethnopharmacologically Selected Guinean Plants. Planta Medica, 2014, 80, 1340-1344.	1.3	32
79	A flow cytometric approach to quantify biofilms. Folia Microbiologica, 2015, 60, 335-342.	2.3	32
80	Trypanosoma brucei Glycogen Synthase Kinase-3, A Target for Anti-Trypanosomal Drug Development: A Public-Private Partnership to Identify Novel Leads. PLoS Neglected Tropical Diseases, 2011, 5, e1017.	3.0	31
81	\hat{l}_{\pm} -Substituted \hat{l}^2 -Oxa Isosteres of Fosmidomycin: Synthesis and Biological Evaluation. Journal of Medicinal Chemistry, 2012, 55, 6566-6575.	6.4	31
82	Assessment of antimicrobial and antiprotozoal activity of the olive oil macerate samples of Hypericum perforatum and their LC–DAD–MS analyses. Food Chemistry, 2013, 138, 870-875.	8.2	31
83	Phytochemical and Pharmacological Investigations on <i>Nymphoides indica</i> Leaf Extracts. Phytotherapy Research, 2016, 30, 1624-1633.	5.8	31
84	DNDI-6148: A Novel Benzoxaborole Preclinical Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2021, 64, 16159-16176.	6.4	31
85	In vitro inhibition of \hat{l}^2 -haematin formation, DNA interactions, antiplasmodial activity, and cytotoxicity of synthetic neocryptolepine derivatives. Experimental Parasitology, 2004, 108, 163-168.	1.2	30
86	Potential of Lichen Secondary Metabolites against <i>Plasmodium </i> Liver Stage Parasites with FAS-II as the Potential Target. Journal of Natural Products, 2013, 76, 1064-1070.	3.0	30
87	In Vitro Antiprotozoal Activity of Abietane Diterpenoids Isolated from Plectranthus barbatus Andr International Journal of Molecular Sciences, 2014, 15, 8360-8371.	4.1	30
88	Cyclopeptide Alkaloids from <i>Hymenocardia acida</i> . Journal of Natural Products, 2016, 79, 1746-1751.	3.0	29
89	Synthesis and evaluation of analogs of the phenylpyridazinone NPD-001 as potent trypanosomal TbrPDEB1 phosphodiesterase inhibitors and in vitro trypanocidals. Bioorganic and Medicinal Chemistry, 2016, 24, 1573-1581.	3.0	29
90	Synthesis of 6-methyl-6H-indolo[3,2-c]isoquinoline and 6-methyl-6H-indolo[2,3-c]isoquinoline: two new unnatural isoquinoline isomers of the cryptolepine series. Tetrahedron, 2008, 64, 11802-11809.	1.9	28

#	Article	IF	Citations
91	αâ€Ketoheterocycles as Inhibitors of <i>Leishmania mexicana</i> Cysteine Protease CPB. ChemMedChem, 2010, 5, 1734-1748.	3.2	28
92	Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Neglected Tropical Diseases, 2017, 11, e0005620.	3.0	28
93	Antitrichomonas In Vitro Activity of Cussonia Holstii Engl. Natural Product Research, 2003, 17, 127-133.	1.8	27
94	Synthesis and antimalarial activity of new analogues of amodiaquine. European Journal of Medicinal Chemistry, 2008, 43, 252-260.	5. 5	27
95	Selective antileishmania activity of 13,28â€epoxyâ€oleanane and related triterpene saponins from the plant families Myrsinaceae, Primulaceae, Aceraceae and Icacinaceae. Phytotherapy Research, 2009, 23, 1404-1410.	5.8	27
96	Efficacy and tolerability of oleylphosphocholine (OIPC) in a laboratory model of visceral leishmaniasis. Journal of Antimicrobial Chemotherapy, 2012, 67, 2707-2712.	3.0	27
97	Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra. Molecules, 2012, 17, 14349-14360.	3.8	26
98	6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]thiazoles: Facile synthesis and comparative appraisal against tuberculosis and neglected tropical diseases. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2583-2589.	2.2	26
99	In vivo Action of the Anticoccidial Diclazuril (Clinacox[registered]) on the Developmental Stages of Eimeria tenella: A Histological Study. Journal of Parasitology, 1988, 74, 931.	0.7	25
100	In vitro antiprotozoal, antimicrobial and antitumor activity of Pavetta crassipes K. Schum leaf extracts. Journal of Ethnopharmacology, 2010, 130, 529-535.	4.1	25
101	Design and evaluation of Trypanosoma brucei metacaspase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2001-2006.	2.2	24
102	Gold compounds as cysteine protease inhibitors: perspectives for pharmaceutical application as antiparasitic agents. BioMetals, 2017, 30, 313-320.	4.1	24
103	Genetic Markers for SSG Resistance in Leishmania donovani and SSG Treatment Failure in Visceral Leishmaniasis Patients of the Indian Subcontinent. Journal of Infectious Diseases, 2012, 206, 752-755.	4.0	23
104	A novel marker, ARM58, confers antimony resistance to Leishmania spp International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 37-47.	3.4	23
105	Fragment-Based Screening in Tandem with Phenotypic Screening Provides Novel Antiparasitic Hits. Journal of Biomolecular Screening, 2015, 20, 131-140.	2.6	23
106	Miltefosine enhances the fitness of a non-virulent drug-resistant <i>Leishmania infantum</i> strain. Journal of Antimicrobial Chemotherapy, 2019, 74, 395-406.	3.0	23
107	Unsaturated Mannich Bases Active Against Multidrugâ€Resistant <i>Trypanosoma brucei brucei</i> Strains. ChemMedChem, 2009, 4, 339-351.	3.2	22
108	Infectivity of Giardia duodenalis Assemblages A and E for the gerbil and axenisation of duodenal trophozoites. Parasitology International, 2010, 59, 634-637.	1.3	22

#	Article	IF	Citations
109	Animal models of invasive aspergillosis for drug discovery. Drug Discovery Today, 2014, 19, 1380-1386.	6.4	22
110	Prodrugs of Reverse Fosmidomycin Analogues. Journal of Medicinal Chemistry, 2015, 58, 2025-2035.	6.4	22
111	Antiprotozoal and Antiglycation Activities of Sesquiterpene Coumarins from Ferula narthex Exudate. Molecules, 2016, 21, 1287.	3.8	22
112	Antiplasmodial Activity, Cytotoxicity and Structure-Activity Relationship Study of Cyclopeptide Alkaloids. Molecules, 2017, 22, 224.	3.8	22
113	Discovery of benzimidazoleâ€based <i>Leishmania mexicana</i> cysteine protease <scp>CPB</scp> 2.8î" <scp>CTE</scp> inhibitors as potential therapeutics for leishmaniasis. Chemical Biology and Drug Design, 2018, 92, 1585-1596.	3.2	22
114	Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 207-213.	2.2	22
115	Synthesis and Antiplasmodial Activity of Highly Active Reverse Analogues of the Antimalarial Drug Candidate Fosmidomycin. ChemMedChem, 2010, 5, 1673-1676.	3.2	21
116	Comparative Gene Expression Analysis throughout the Life Cycle of Leishmania braziliensis: Diversity of Expression Profiles among Clinical Isolates. PLoS Neglected Tropical Diseases, 2011, 5, e1021.	3.0	21
117	Hypoestenonols A and B, new fusicoccane diterpenes from Hypoestes forskalei. Phytochemistry Letters, 2014, 10, 23-27.	1.2	21
118	Comparative Fitness of a Parent Leishmania donovani Clinical Isolate and Its Experimentally Derived Paromomycin-Resistant Strain. PLoS ONE, 2015, 10, e0140139.	2.5	21
119	Intracellular amastigote replication may not be required for successful in vitro selection of miltefosine resistance in Leishmania infantum. Parasitology Research, 2015, 114, 2561-2565.	1.6	21
120	<i>In vitro</i> â€time-to-kill' assay to assess the cidal activity dynamics of current reference drugs against <i>Leishmania donovani</i> and <i>Leishmania infantum</i> . Journal of Antimicrobial Chemotherapy, 2017, 72, 428-430.	3.0	21
121	Discovery of Pyrrolo[2,3- <i>b</i>)pyridine (1,7-Dideazapurine) Nucleoside Analogues as Anti- <i>Trypanosoma cruzi</i> Agents. Journal of Medicinal Chemistry, 2019, 62, 8847-8865.	6.4	21
122	Role of oxidative stress and apoptosis in the cellular response of murine macrophages upon <i>Leishmania</i> infection. Parasitology, 2012, 139, 1429-1437.	1.5	20
123	Drug-to-Genome-to-Drug, Step 2: Reversing Selectivity in a Series of Antiplasmodial Compounds. Journal of Medicinal Chemistry, 2012, 55, 1274-1286.	6.4	20
124	Alpha-Heteroatom Derivatized Analogues of 3-(Acetylhydroxyamino)propyl Phosphonic Acid (FR900098) as Antimalarials. Journal of Medicinal Chemistry, 2013, 56, 376-380.	6.4	20
125	Importance of biofilm formation and dipeptidyl peptidase IV for the pathogenicity of clinical <i>Porphyromonas gingivalis</i> isolates. Pathogens and Disease, 2014, 70, 408-413.	2.0	20
126	Evaluation of a Pan-Leishmania Spliced-Leader RNA Detection Method in Human Blood and Experimentally Infected Syrian Golden Hamsters. Journal of Molecular Diagnostics, 2018, 20, 253-263.	2.8	20

#	Article	IF	CITATIONS
127	The impact of the age of first blood meal and Zika virus infection on Aedes aegypti egg production and longevity. PLoS ONE, 2018, 13, e0200766.	2.5	20
128	Amino acid based prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorganic and Medicinal Chemistry, 2019, 27, 729-747.	3.0	20
129	Structure–Activity Relationship Exploration of 3′-Deoxy-7-deazapurine Nucleoside Analogues as Anti- <i>Trypanosoma brucei</i> Agents. ACS Infectious Diseases, 2020, 6, 2045-2056.	3.8	20
130	The malaria co-infection challenge: An investigation into the antimicrobial activity of selected Guinean medicinal plants. Journal of Ethnopharmacology, 2015, 174, 576-581.	4.1	19
131	In vitro CYP1A activity in the zebrafish: temporal but low metabolite levels during organogenesis and lack of gender differences in the adult stage. Reproductive Toxicology, 2016, 64, 50-56.	2.9	19
132	In Vitro and In Silico Antidiabetic and Antimicrobial Evaluation of Constituents from Kickxia ramosissima (Nanorrhinum ramosissimum). Frontiers in Pharmacology, 2017, 8, 232.	3.5	19
133	Revisiting Pyrazolo[3,4- <i>d</i>]pyrimidine Nucleosides as Anti- <i>Trypanosoma cruzi</i> and Antileishmanial Agents. Journal of Medicinal Chemistry, 2021, 64, 4206-4238.	6.4	19
134	A Novel Isoflavonoid from Millettia puguensis. Planta Medica, 2006, 72, 1341-1343.	1.3	18
135	Study of potential systemic oxidative stress animal models for the evaluation of antioxidant activity: status of lipid peroxidation and fat-soluble antioxidants. Journal of Pharmacy and Pharmacology, 2010, 59, 131-136.	2.4	18
136	In vitro Antileishmanial and Antimalarial Activity of Selected Plants of Nepal. Journal of Intercultural Ethnopharmacology, 2016, 5, 383.	0.9	18
137	Characterizing the in vitro biofilm phenotype of Staphylococcus epidermidis isolates from central venous catheters. Journal of Microbiological Methods, 2016, 127, 95-101.	1.6	18
138	InÂvitro screening of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives as antiprotozoal agents and docking studies on Trypanosoma cruzi CYP51. European Journal of Medicinal Chemistry, 2016, 113, 28-33.	5.5	18
139	Repurposing Auranofin and Evaluation of a New Gold(I) Compound for the Search of Treatment of Human and Cattle Parasitic Diseases: From Protozoa to Helminth Infections. Molecules, 2020, 25, 5075.	3.8	18
140	2-(2-Oxo-morpholin-3-yl)-acetamide Derivatives as Broad-Spectrum Antifungal Agents. Journal of Medicinal Chemistry, 2015, 58, 1502-1512.	6.4	17
141	Lack of correlation between the promastigote back-transformation assay and miltefosine treatment outcome. Journal of Antimicrobial Chemotherapy, 2015, 70, 3023-3026.	3.0	17
142	Targeting an Aromatic Hotspot in <i>Plasmodium falciparum</i> 1â€Deoxyâ€ <scp>d</scp> â€xyluloseâ€5â€phosphate Reductoisomerase with βâ€Arylpropyl Analogues of Fosmidomycin. ChemMedChem, 2016, 11, 2024-2036.	3.2	17
143	Cyclic Nucleotide-Specific Phosphodiesterases as Potential Drug Targets for Anti-Leishmania Therapy. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	17
144	Characterization of the role of N-glycosylation sites in the respiratory syncytial virus fusion protein in virus replication, syncytium formation and antigenicity. Virus Research, 2019, 266, 58-68.	2.2	17

#	Article	IF	CITATIONS
145	Heteroaryl ether analogues of an antileishmanial 7-substituted 2-nitroimidazooxazine lead afford attenuated hERG risk: InÂvitro and inÂvivo appraisal. European Journal of Medicinal Chemistry, 2021, 209, 112914.	5 . 5	17
146	Multilocus genotyping reveals a polyphyletic pattern among naturally antimony-resistant Leishmania braziliensis isolates from Peru. Infection, Genetics and Evolution, 2011, 11, 1873-1880.	2.3	16
147	In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids. Molecules, 2016, 21, 853.	3.8	16
148	A novel serine protease inhibitor as potential treatment for dry eye syndrome and ocular inflammation. Scientific Reports, 2020, 10, 17268.	3.3	16
149	Synthesis and Structureâ^'Activity Relationships of Imidazopyridine/Pyrimidineâ€and Furopyridineâ€Based Antiâ€infective Agents against Trypanosomiases. ChemMedChem, 2021, 16, 966-975.	3.2	16
150	Novel triazine dimers with potent antitrypanosomal activity. European Journal of Medicinal Chemistry, 2018, 143, 306-319.	5.5	16
151	<i>In Vitro</i> Profiling of Pramiconazole and <i>In Vivo</i> Evaluation in <i>Microsporum canis</i> Dermatitis and <i>Candida albicans</i> Vaginitis Laboratory Models. Antimicrobial Agents and Chemotherapy, 2010, 54, 4927-4929.	3.2	15
152	Antimalarial activity of new acridinone derivatives. Biomedicine and Pharmacotherapy, 2011, 65, 210-214.	5.6	15
153	Antiprotozoal and antiangiogenic saponins from Apodytes dimidiata. Phytochemistry, 2011, 72, 1414-1423.	2.9	15
154	Optimization and validation of an existing, surgical and robust dry eye rat model for the evaluation of therapeutic compounds. Experimental Eye Research, 2016, 146, 172-178.	2.6	15
155	Imidazole Derivatives as Promising Agents for the Treatment of Chagas Disease. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
156	In-depth comparison of cell-based methodological approaches to determine drug susceptibility of visceral Leishmania isolates. PLoS Neglected Tropical Diseases, 2019, 13, e0007885.	3.0	15
157	Impact of clinically acquired miltefosine resistance by Leishmania infantum on mouse and sand fly infection. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 13, 16-21.	3.4	15
158	High throughput estimates of Wolbachia, Zika and chikungunya infection in Aedes aegypti by near-infrared spectroscopy to improve arbovirus surveillance. Communications Biology, 2021, 4, 67.	4.4	15
159	Synthesis and antimalarial activity of carbamate and amide derivatives of 4-anilinoquinoline. European Journal of Medicinal Chemistry, 2008, 43, 2045-2055.	5.5	14
160	Comparative EPR study of different macrophage types stimulated for superoxide and nitric oxide production. Free Radical Research, 2010, 44, 763-772.	3.3	14
161	In vitro and in vivo prophylactic and curative activity of the triterpene saponin PX-6518 against cutaneous Leishmania species. Journal of Antimicrobial Chemotherapy, 2011, 66, 350-353.	3.0	14
162	Synthesis and in vitro investigation of halogenated 1,3â€bis(4â€nitrophenyl)triazenide salts as antitubercular compounds. Chemical Biology and Drug Design, 2018, 91, 631-640.	3.2	14

#	Article	IF	Citations
163	In vitro and in vivo antiplasmodial activity of extracts and isolated constituents of Alstonia congensis root bark. Journal of Ethnopharmacology, 2019, 242, 111736.	4.1	14
164	Synthesis and evaluation of a collection of purine-like C-nucleosides as antikinetoplastid agents. European Journal of Medicinal Chemistry, 2021, 212, 113101.	5. 5	14
165	Synthesis and evaluation of $3\hat{a}\in^2$ -fluorinated 7-deazapurine nucleosides as antikinetoplastid agents. European Journal of Medicinal Chemistry, 2021, 216, 113290.	5.5	14
166	<i>In vitro</i> cytotoxic, antiprotozoal and antimicrobial activities of medicinal plants from Vanuatu. Phytotherapy Research, 2010, 24, 800-809.	5.8	13
167	Novel fungicidal benzylsulfanyl-phenylguanidines. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3686-3692.	2.2	13
168	Antimicrobial activity of someClerodendrumspecies from Egypt. Natural Product Research, 2013, 27, 1032-1036.	1.8	13
169	Isolation and Structure Elucidation by LC-DAD-MS and LC-DAD-SPE-NMR of Cyclopeptide Alkaloids from the Roots of <i>Ziziphus oxyphylla</i> and Evaluation of Their Antiplasmodial Activity. Journal of Natural Products, 2016, 79, 2865-2872.	3.0	13
170	Respiratory syncytial virus (RSV) entry is inhibited by serine protease inhibitor AEBSF when present during an early stage of infection. Virology Journal, 2017, 14, 157.	3.4	13
171	Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 3998-4012.	3.0	13
172	Sand Fly Studies Predict Transmission Potential of Drug-resistant Leishmania. Trends in Parasitology, 2020, 36, 785-795.	3.3	13
173	Feeding behavior and activity of Phlebotomus pedifer and potential reservoir hosts of Leishmania aethiopica in southwestern Ethiopia. PLoS Neglected Tropical Diseases, 2020, 14, e0007947.	3.0	13
174	Preparation and Characterization of Nanostructured Lipid Carriers for Improved Topical Drug Delivery: Evaluation in Cutaneous Leishmaniasis and Vaginal Candidiasis Animal Models. AAPS PharmSciTech, 2020, 21, 185.	3.3	13
175	The Relevance of Susceptibility Tests, Breakpoints, and Markers. , 2013, , 407-429.		12
176	Removal of the N-Glycosylation Sequon at Position N116 Located in p27 of the Respiratory Syncytial Virus Fusion Protein Elicits Enhanced Antibody Responses after DNA Immunization. Viruses, 2018, 10, 426.	3.3	12
177	Miltefosine enhances infectivity of a miltefosine-resistant Leishmania infantum strain by attenuating its innate immune recognition. PLoS Neglected Tropical Diseases, 2021, 15, e0009622.	3.0	12
178	Long-term hematopoietic stem cells as a parasite niche during treatment failure in visceral leishmaniasis. Communications Biology, 2022, 5, .	4.4	12
179	A General Approach to the Synthesis of Polyamine Linked-Monoindolylmaleimides, a New Series of Trypanothione Reductase Inhibitors Chemical and Pharmaceutical Bulletin, 1998, 46, 707-710.	1.3	11
180	Flow Cytometric Enumeration of Bacteria Using TO-PRO®-3 lodide as a Single-Stain Viability Dye. Journal of the Association for Laboratory Automation, 2014, 19, 555-561.	2.8	11

#	Article	IF	CITATIONS
181	Development of a novel in vitro onychomycosis model for the evaluation of topical antifungal activity. Journal of Microbiological Methods, 2015, 112, 73-75.	1.6	11
182	Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors (Part 2). Bioorganic and Medicinal Chemistry, 2019, 27, 4013-4029.	3.0	11
183	Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms, 2020, 8, 950.	3.6	11
184	Phenotypic adaptations of Leishmania donovani to recurrent miltefosine exposure and impact on sand fly infection. Parasites and Vectors, 2020, 13, 96.	2.5	11
185	Antimicrobial and antiprotozoal activities of silver coordination polymers derived from the asymmetric halogenated Schiff base ligands. Applied Organometallic Chemistry, 2021, 35, e6079.	3.5	11
186	Antimalarial activity of extract and norbergenin derivatives from the stem bark of ⟨i⟩Diospyros sanzaâ€minika⟨/i⟩ A. Chevalier (Ebenaceae). Phytotherapy Research, 2010, 24, 1676-1679.	5.8	10
187	Isomeric Tropane Alkaloids from the Aerial Parts of <i>Schizanthus tricolor</i> Journal of Natural Products, 2010, 73, 844-847.	3.0	10
188	Drug susceptibility of Leishmania infantum (syn. Leishmania chagasi) isolates from Brazilian HIV-positive and HIV-negative patients. Journal of Antimicrobial Chemotherapy, 2011, 66, 677-679.	3.0	10
189	Evaluation of the Antiâ€Adhesive Effect of Milk Fat Globule Membrane Glycoproteins on <i>Helicobacter pylori</i> in the Human NClâ€N87 Cell Line and C57BL/6 Mouse Model. Helicobacter, 2012, 17, 312-318.	3.5	10
190	Transcript and Protein Analysis Reveals Better Survival Skills of Monocyte-Derived Dendritic Cells Compared to Monocytes during Oxidative Stress. PLoS ONE, 2012, 7, e43357.	2.5	10
191	Quantification of Candida albicans by flow cytometry using TO-PROÂ $^{\circ}$ -3 iodide as a single-stain viability dye. Journal of Microbiological Methods, 2013, 92, 189-191.	1.6	10
192	From human immunodeficiency virus non-nucleoside reverse transcriptase inhibitors to potent and selective antitrypanosomal compounds. Bioorganic and Medicinal Chemistry, 2014, 22, 5241-5248.	3.0	10
193	Efficacy of oleylphosphocholine (Ol <scp>PC</scp>) <i>iin vitro</i> and in a mouse model of invasive aspergillosis. Mycoses, 2015, 58, 127-132.	4.0	10
194	Development and Characterization of New Species Cross-Reactive Anti-Sialoadhesin Monoclonal Antibodies. Antibodies, 2016, 5, 7.	2.5	10
195	Antiprotozoal activity of major constituents from the bioactive fraction of <i>Verbesina encelioides</i> Natural Product Research, 2017, 31, 676-680.	1.8	10
196	Monoclonal antibody binding to the macrophage-specific receptor sialoadhesin alters the phagocytic properties of human and mouse macrophages. Cellular Immunology, 2017, 312, 51-60.	3.0	10
197	Miltefosine-resistant Leishmania infantum strains with an impaired MT/ROS3 transporter complex retain amphotericin B susceptibility. Journal of Antimicrobial Chemotherapy, 2018, 73, 392-394.	3.0	10
198	Ensembleâ€based ADME–Tox profiling and virtual screening for the discovery of new inhibitors of the ⟨i>Leishmania mexicana⟨ i> cysteine protease CPB2.8ΔCTE. Chemical Biology and Drug Design, 2018, 91, 597-604.	3.2	10

#	Article	IF	Citations
199	The synthesis and inÂvitro biological evaluation of novel fluorinated tetrahydrobenzo[j]phenanthridine-7,12-diones against Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 2019, 181, 111549.	5.5	10
200	Screening of a PDE-focused library identifies imidazoles with in vitro and in vivo antischistosomal activity. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 9, 35-43.	3.4	10
201	Bioassay-guided isolation of antiplasmodial and antimicrobial constituents from the roots of Terminalia albida. Journal of Ethnopharmacology, 2021, 267, 113624.	4.1	10
202	6â€Methylâ€7â€Arylâ€7â€Deazapurine Nucleosides as Anti―Trypanosoma cruzi Agents: Structureâ€Activity Relationship and inâ€vivo Efficacy. ChemMedChem, 2021, 16, 2231-2253.	3.2	10
203	LCâ€MS analysis of 13,28â€epoxyâ€oleanane saponins in <i>Maesa spp</i> . extracts with antileishmanial activity. Phytochemical Analysis, 2009, 20, 159-167.	2.4	9
204	Antiplasmodial and cytotoxic activities of Striga asiatica and Sauropus spatulifolius extracts, and their isolated constituents. Phytochemistry Letters, 2013, 6, 53-58.	1.2	9
205	Evaluation of topical antifungal products in an <i>in vitro</i> onychomycosis model. Mycoses, 2016, 59, 327-330.	4.0	9
206	Impaired development of a miltefosine-resistant Leishmania infantum strain in the sand fly vectors Phlebotomus perniciosus and Lutzomyia longipalpis. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 1-7.	3.4	9
207	Antimicrobial investigation of ethnobotanically selected guinean plant species. Journal of Ethnopharmacology, 2020, 263, 113232.	4.1	9
208	A Novel Series of [1,2,4]Triazolo[4,3-a]Pyridine Sulfonamides as Potential Antimalarial Agents: In Silico Studies, Synthesis and In Vitro Evaluation. Molecules, 2020, 25, 4485.	3.8	9
209	Efficacy of Novel Pyrazolone Phosphodiesterase Inhibitors in Experimental Mouse Models of Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	9
210	Novel Linker Variants of Antileishmanial/Antitubercular 7-Substituted 2-Nitroimidazooxazines Offer Enhanced Solubility. ACS Medicinal Chemistry Letters, 2021, 12, 275-281.	2.8	9
211	In Vitro Growth Inhibition Assays of Leishmania spp Methods in Molecular Biology, 2020, 2116, 791-800.	0.9	9
212	Nucleoside analogues for the treatment of animal trypanosomiasis. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 19, 21-30.	3.4	9
213	Intrinsic susceptibility of Giardia duodenalis assemblage subtypes AI, AII, B and EIII for nitric oxide under axenic culture conditions. Parasitology Research, 2012, 110, 1315-1319.	1.6	8
214	Pyrrolo $[1,2-\hat{l}\pm][1,4]$ benzodiazepines show potent in vitro antifungal activity and significant in vivo efficacy in a Microsporum canis dermatitis model in guinea pigs. Journal of Antimicrobial Chemotherapy, 2014, 69, 1608-1610.	3.0	8
215	Isolation and Characterization of Clinical RSV Isolates in Belgium during the Winters of 2016–2018. Viruses, 2019, 11, 1031.	3.3	8
216	Evaluation of phthalazinone phosphodiesterase inhibitors with improved activity and selectivity against Trypanosoma cruzi. Journal of Antimicrobial Chemotherapy, 2020, 75, 958-967.	3.0	8

#	Article	IF	CITATIONS
217	Lead Optimization of Phthalazinone Phosphodiesterase Inhibitors as Novel Antitrypanosomal Compounds. Journal of Medicinal Chemistry, 2020, 63, 3485-3507.	6.4	8
218	Evaluation of a pan-Leishmania SL RNA qPCR assay for parasite detection in laboratory-reared and field-collected sand flies and reservoir hosts. Parasites and Vectors, 2020, 13, 276.	2.5	8
219	2-aminobenzimidazoles for leishmaniasis: From initial hit discovery to in vivo profiling. PLoS Neglected Tropical Diseases, 2021, 15, e0009196.	3.0	8
220	4E Interacting Protein as a Potential Novel Drug Target for Nucleoside Analogues in Trypanosoma brucei. Microorganisms, 2021, 9, 826.	3.6	8
221	Identification of Resistance Determinants for a Promising Antileishmanial Oxaborole Series. Microorganisms, 2021, 9, 1408.	3.6	8
222	Ellagic Acid Derivatives from <i>Syzygium cumini</i> Stem Bark: Investigation of their Antiplasmodial Activity. Natural Product Communications, 2009, 4, 1934578X0900401.	0.5	7
223	Antimicrobial Assessment of Resins from <i>Calophyllum Antillanum</i> and <i>Calophyllum Inophyllum</i> . Phytotherapy Research, 2015, 29, 1991-1994.	5.8	7
224	Pharmacokinetics and pharmacodynamics of oleylphosphocholine in a hamster model of visceral leishmaniasis. Journal of Antimicrobial Chemotherapy, 2016, 71, 1892-1898.	3.0	7
225	Anti-infective, cytotoxic and antioxidant activity of Ziziphus oxyphylla and Cedrela serrata. Asian Pacific Journal of Tropical Biomedicine, 2016, 6, 671-676.	1.2	7
226	Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines. Immunobiology, 2017, 222, 797-806.	1.9	7
227	Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties. Molecules, 2017, 22, 161.	3.8	7
228	Synthesis and antimicrobial activities of N6-hydroxyagelasine analogs and revision of the structure of ageloximes. Bioorganic and Medicinal Chemistry, 2019, 27, 620-629.	3.0	7
229	7-Aryl-7-deazapurine 3′-deoxyribonucleoside derivative as a novel lead for Chagas' disease therapy: <i>in vitro</i> and <i>in vivo</i> pharmacology. JAC-Antimicrobial Resistance, 2021, 3, dlab168.	2.1	7
230	N-modification of 7-Deazapurine nucleoside analogues as Anti-Trypanosoma cruzi and anti-Leishmania agents: Structure-activity relationship exploration and InÂvivo evaluation. European Journal of Medicinal Chemistry, 2022, 231, 114165.	5.5	7
231	The role of the globin-coupled sensor YddV in a mature E. coli biofilm population. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 835-839.	2.3	6
232	Molecular detection of infection homogeneity and impact of miltefosine treatment in a Syrian golden hamster model of Leishmania donovani and L. infantum visceral leishmaniasis. Parasitology Research, 2016, 115, 4061-4070.	1.6	6
233	Triterpenoid Saponins from Maesa argentea Leaves. Planta Medica, 2016, 82, 1568-1575.	1.3	6
234	Optimization of the pharmacokinetic properties of potent anti-trypanosomal triazine derivatives. European Journal of Medicinal Chemistry, 2018, 151, 18-26.	5 . 5	6

#	Article	IF	CITATIONS
235	Double prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1232-1235.	2.2	6
236	Phenyldihydropyrazolones as Novel Lead Compounds Against <i>Trypanosoma cruzi</i> . ACS Omega, 2019, 4, 6585-6596.	3.5	6
237	6-Methyl-7-deazapurine nucleoside analogues as broad-spectrum antikinetoplastid agents. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17, 57-66.	3.4	6
238	Hit-to-lead optimization of a benzene sulfonamide series for potential antileishmanial agents. RSC Medicinal Chemistry, 2020, 11, 1267-1274.	3.9	5
239	Structureâ€Activity Relationship of Phenylpyrazolones against Trypanosoma cruzi. ChemMedChem, 2020, 15, 1310-1321.	3.2	5
240	Discovery of Diaryl Ether Substituted Tetrahydrophthalazinones as TbrPDEB1 Inhibitors Following Structure-Based Virtual Screening. Frontiers in Chemistry, 2020, 8, 608030.	3.6	5
241	3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 19, 47-55.	3.4	5
242	An Alternative, Sensitive Method to Detect <i>Helicobacter pylori</i> DNA in Feces. Helicobacter, 2011, 16, 113-118.	3.5	4
243	In-vivo evaluation of apocynin for prevention of Helicobacter pylori-induced gastric carcinogenesis. European Journal of Cancer Prevention, 2017, 26, 10-16.	1.3	4
244	Biological and Phytochemical Investigations on Caesalpinia benthamiana, a Plant Traditionally Used as Antimalarial in Guinea. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-7.	1.2	4
245	HPLC-DAD-SPE-NMR isolation of tetracyclic spiro-alkaloids with antiplasmodial activity from the seeds of <i>Erythrina latissima</i> Natural Product Research, 2020, 34, 1037-1040.	1.8	4
246	Identification of Phenylphthalazinones as a New Class of <i>Leishmania infantum</i> Inhibitors. ChemMedChem, 2020, 15, 219-227.	3.2	4
247	Interferon Alpha Favors Macrophage Infection by Visceral Leishmania Species Through Upregulation of Sialoadhesin Expression. Frontiers in Immunology, 2020, 11, 1113.	4.8	4
248	Synthesis and In Vitro Evaluation of Tropane Halogenated-derivatives Against Malaria, Sleeping Sickness, Chagas Disease and Leishmaniasis. Medicinal Chemistry, 2014, 10, 753-758.	1.5	4
249	Exploration of 6-methyl-7-(Hetero)Aryl-7-Deazapurine ribonucleosides as antileishmanial agents. European Journal of Medicinal Chemistry, 2022, 237, 114367.	5 . 5	4
250	Efficient Electrochemical <i>N</i> -Alkylation of <i>N</i> -Boc-Protected 4-Aminopyridines: Towards New Biologically Active Compounds. ISRN Organic Chemistry, 2014, 2014, 1-10.	1.0	3
251	The Challenges of Effective Leishmaniasis Treatment. , 2018, , 193-206.		3
252	Intravenous and Subcutaneous Toxicity and Absorption Kinetics in Mice and Dogs of the Antileishmanial Triterpene Saponin PX-6518. Molecules, 2013, 18, 4803-4815.	3.8	2

#	Article	IF	CITATIONS
253	Optimization and characterization of a murine lung infection model for the evaluation of novel therapeutics against Burkholderia cenocepacia. Journal of Microbiological Methods, 2017, 139, 181-188.	1.6	2
254	Two New Hygroline and Tropane Alkaloids Isolated from Schizanthus Hookeri and S. Tricolor (Solanaceae). Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	2
255	UPLC/MS MS data of testosterone metabolites in human and zebrafish liver microsomes and whole zebrafish larval microsomes. Data in Brief, 2018, 16, 644-648.	1.0	2
256	Identification of Phenylpyrazolone Dimers as a New Class of Anti―Trypanosoma cruzi Agents. ChemMedChem, 2019, 14, 1662-1668.	3.2	2
257	Deciphering the enzymatic target of a new family of antischistosomal agents bearing a quinazoline scaffold using complementary computational tools. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 511-523.	5.2	2
258	Synthesis, Biological Activity and In Silico Pharmacokinetic Prediction of a New 2-Thioxo-Imidazoldidin-4-One of Primaquine. Pharmaceuticals, 2021, 14, 196.	3.8	2
259	Synthesis and <i>In Vitro</i> Biological Evaluation of Quinolinyl Pyrimidines Targeting Type II NADH-Dehydrogenase (NDH-2). ACS Infectious Diseases, 2022, 8, 482-498.	3.8	2
260	Comparative evaluation of nucleic acid stabilizing reagents for RNA- and DNA-based Leishmania detection in blood as proxy for visceral burdens. Journal of Microbiological Methods, 2020, 173, 105935.	1.6	1
261	Bioactive Metabolites of Marine Origin Have Unusual Effects on Model Membrane Systems. Marine Drugs, 2020, 18, 125.	4.6	1
262	Tetrahydrophthalazinone Inhibitor of Phosphodiesterase with <i>In Vitro</i> Activity against Intracellular Trypanosomatids. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	1
263	Structure Activity Relationship of N-Substituted Phenyldihydropyrazolones Against Trypanosoma cruzi Amastigotes. Frontiers in Chemistry, 2021, 9, 608438.	3.6	1
264	Development of Novel Isoindoloneâ€Based Compounds against Trypanosoma brucei rhodesiense. ChemistryOpen, 2021, 10, 922-927.	1.9	0
265	Title is missing!. , 2020, 14, e0007947.		O
266	Title is missing!. , 2020, 14, e0007947.		0
267	Title is missing!. , 2020, 14, e0007947.		0
268	Title is missing!. , 2020, 14, e0007947.		0
269	Title is missing!. , 2020, 14, e0007947.		0
270	Title is missing!. , 2020, 14, e0007947.		0