Trond P Leren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3508566/publications.pdf Version: 2024-02-01

TROND DIEDEN

#	Article	IF	CITATIONS
1	Mortality Among Patients With Familial Hypercholesterolemia: A Registryâ€Based Study in Norway, 1992–2010. Journal of the American Heart Association, 2014, 3, e001236.	3.7	99
2	Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis, 2014, 237, 76-81.	0.8	75
3	Cardiovascular disease mortality in patients with genetically verified familial hypercholesterolemia in Norway during 1992–2013. European Journal of Preventive Cardiology, 2017, 24, 137-144.	1.8	49
4	Impact of age on excess risk of coronary heart disease in patients with familial hypercholesterolaemia. Heart, 2018, 104, 1600-1607.	2.9	49
5	Identification of deletions and duplications in the low density lipoprotein receptor gene by MLPA. Clinica Chimica Acta, 2005, 356, 164-171.	1.1	43
6	PCSK9 acts as a chaperone for the LDL receptor in the endoplasmic reticulum. Biochemical Journal, 2014, 457, 99-105.	3.7	40
7	Identification and characterization of two novel mutations in the LPL gene causing type I hyperlipoproteinemia. Journal of Clinical Lipidology, 2016, 10, 816-823.	1.5	31
8	Cardiovascular disease in patients with genotyped familial hypercholesterolemia in Norway during 1994–2009, a registry study. European Journal of Preventive Cardiology, 2016, 23, 1962-1969.	1.8	31
9	Association of Low-Density Lipoprotein Cholesterol With Risk of Aortic Valve Stenosis in Familial Hypercholesterolemia. JAMA Cardiology, 2019, 4, 1156.	6.1	31
10	PCSK9-mediated degradation of the LDL receptor generates a 17 kDa C-terminal LDL receptor fragment. Journal of Lipid Research, 2013, 54, 1560-1566.	4.2	29
11	Subjects with Molecularly Defined Familial Hypercholesterolemia or Familial Defective apoB-100 Are Not Being Adequately Treated. PLoS ONE, 2011, 6, e16721.	2.5	28
12	Mutation G805R in the transmembrane domain of the LDL receptor gene causes familial hypercholesterolemia by inducing ectodomain cleavage of the LDL receptor in the endoplasmic reticulum. FEBS Open Bio, 2014, 4, 321-327.	2.3	27
13	2.5-fold increased risk of recurrent acute myocardial infarction with familial hypercholesterolemia. Atherosclerosis, 2021, 319, 28-34.	0.8	17
14	Molecular genetic testing for autosomal dominant hypercholesterolemia in 29,449 Norwegian index patients and 14,230 relatives during the years 1993–2020. Atherosclerosis, 2021, 322, 61-66.	0.8	17
15	Increased risk of heart failure and atrial fibrillation in heterozygous familial hypercholesterolemia. Atherosclerosis, 2017, 266, 69-73.	0.8	16
16	Prevalence of cholesteryl ester storage disease among hypercholesterolemic subjects and functional characterization of mutations in the lysosomal acid lipase gene. Molecular Genetics and Metabolism, 2018, 123, 169-176.	1.1	15
17	Type 1 hyperlipoproteinemia due to a novel deletion of exons 3 and 4 in the GPIHBP1 gene. Atherosclerosis, 2014, 234, 30-33.	0.8	12
18	MK-2206, an allosteric inhibitor of AKT, stimulates LDLR expression and LDL uptake: A potential hypocholesterolemic agent. Atherosclerosis, 2018, 276, 28-38.	0.8	12

TROND P LEREN

#	Article	IF	CITATIONS
19	Risk of Ischemic Stroke and Total Cerebrovascular Disease in Familial Hypercholesterolemia. Stroke, 2019, 50, 172-174.	2.0	12
20	Lower risk of smoking-related cancer in individuals with familial hypercholesterolemia compared with controls: a prospective matched cohort study. Scientific Reports, 2019, 9, 19273.	3.3	9
21	Studies of the autoinhibitory segment comprising residues 31–60 of the prodomain of PCSK9: Possible implications for the mechanism underlying gain-of-function mutations. Molecular Genetics and Metabolism Reports, 2016, 9, 86-93.	1.1	8
22	Results of comprehensive diagnostic work-up in â€~idiopathic' dilated cardiomyopathy. Open Heart, 2015, 2, e000271.	2.3	7
23	Prevalence of genetically verified familial hypercholesterolemia among young (<45Âyears) Norwegian patients hospitalized with acute myocardial infarction. Journal of Clinical Lipidology, 2020, 14, 339-345.	1.5	7
24	Mutations affecting the transmembrane domain of the LDL receptor: impact of charged residues on the membrane insertion. Human Molecular Genetics, 2017, 26, 1634-1642.	2.9	6
25	Variable phenotypic expression of nonsense mutation p.Thr5* in the APOE gene. Molecular Genetics and Metabolism Reports, 2016, 9, 67-70.	1.1	5
26	Bone morphogenetic protein 1 cleaves the linker region between ligand-binding repeats 4 and 5 of the LDL receptor and makes the LDL receptor non-functional. Human Molecular Genetics, 2020, 29, 1229-1238.	2.9	5
27	Long QT syndrome KCNH2 mutation with sequential fetal and maternal sudden death. Forensic Science, Medicine, and Pathology, 2018, 14, 367-371.	1.4	4
28	Characterization of the mechanisms by which missense mutations in the lysosomal acid lipase gene disrupt enzymatic activity. Human Molecular Genetics, 2019, 28, 3043-3052.	2.9	4
29	The importance of cascade genetic screening for diagnosing autosomal dominant hypercholesterolemia: Results from twenty years of a national screening program in Norway. Journal of Clinical Lipidology, 2021, 15, 674-681.	1.5	4
30	Molecular genetics in 4 408 cardiomyopathy probands and 3 008 relatives in Norway: 17 years of genetic testing in a national laboratory. European Journal of Preventive Cardiology, 0, , .	1.8	4
31	Strategies to prevent cleavage of the linker region between ligand-binding repeats 4 and 5 of the LDL receptor. Human Molecular Genetics, 2019, 28, 3734-3741.	2.9	3
32	Lysosomal acid lipase does not have a propeptide and should not be considered being a proprotein. Proteins: Structure, Function and Bioinformatics, 2020, 88, 440-448.	2.6	3
33	Excess Aortic Pathology Risk in Patients with Genetically Verified Familial Hypercholesterolaemia: A Prospective Norwegian Registry Study. European Journal of Vascular and Endovascular Surgery, 2021, 61, 712-713.	1.5	3
34	Association of Familial Hypercholesterolemia and Statin Use With Risk of Dementia in Norway. JAMA Network Open, 2022, 5, e227715.	5.9	2