## N Sanjeeva Murthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3508419/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. Journal of Polymer<br>Science, Part B: Polymer Physics, 2006, 44, 1763-1782.                                                                         | 2.1  | 200       |
| 2  | Temperature-dependent structure of ionic liquids: X-ray scattering and simulations. Faraday Discussions, 2012, 154, 133-143.                                                                                                         | 3.2  | 171       |
| 3  | Investigation of Brill Transition in Nylon 6 and Nylon 6,6 by Infrared Spectroscopy. Macromolecules, 1998, 31, 8433-8435.                                                                                                            | 4.8  | 164       |
| 4  | Javelin-, Hockey Stick-, and Boomerang-Shaped Liquid Crystals. Structural Variations on p-Quinquephenyl. Journal of Physical Chemistry B, 2001, 105, 8845-8860.                                                                      | 2.6  | 151       |
| 5  | How Does the Ionic Liquid Organizational Landscape Change when Nonpolar Cationic Alkyl Groups<br>Are Replaced by Polar Isoelectronic Diethers?. Journal of Physical Chemistry B, 2013, 117, 1130-1135.                               | 2.6  | 134       |
| 6  | Communication: X-ray scattering from ionic liquids with pyrrolidinium cations. Journal of Chemical Physics, 2011, 134, 121101.                                                                                                       | 3.0  | 127       |
| 7  | Structure of 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide Ionic Liquids with<br>Linear, Branched, and Cyclic Alkyl Groups. Journal of Physical Chemistry B, 2013, 117, 15328-15337.                               | 2.6  | 121       |
| 8  | Interactions between Crystalline and Amorphous Domains in Semicrystalline Polymers:Â Small-Angle<br>X-ray Scattering Studies of the Brill Transition in Nylon 6,6. Macromolecules, 1999, 32, 5594-5599.                              | 4.8  | 64        |
| 9  | Self-Assembly of Left- and Right-Handed Molecular Screws. Journal of the American Chemical Society, 2013, 135, 18762-18765.                                                                                                          | 13.7 | 55        |
| 10 | Order parameter measurements in polypeptide liquid crystals. Journal of Chemical Physics, 1976, 65,<br>4835-4839.                                                                                                                    | 3.0  | 49        |
| 11 | Machine Learning on a Robotic Platform for the Design of Polymer–Protein Hybrids. Advanced<br>Materials, 2022, 34, e2201809.                                                                                                         | 21.0 | 48        |
| 12 | PET-RAFT and SAXS: High Throughput Tools To Study Compactness and Flexibility of Single-Chain<br>Polymer Nanoparticles. Macromolecules, 2019, 52, 8295-8304.                                                                         | 4.8  | 43        |
| 13 | Poly(NaSS) Functionalization Modulates the Conformation of Fibronectin and Collagen Type I To<br>Enhance Osteoblastic Cell Attachment onto Ti6Al4V. Langmuir, 2014, 30, 9477-9483.                                                   | 3.5  | 41        |
| 14 | Design of barrier coatings on kink-resistant peripheral nerve conduits. Journal of Tissue Engineering,<br>2016, 7, 204173141662947.                                                                                                  | 5.5  | 41        |
| 15 | Molecular, Crystalline, and Lamellar Length-Scale Changes in the Poly( <scp>l</scp> -lactide) (PLLA)<br>during Cyclopentanone (CPO) Desorption in PLLA/CPO Cocrystals. Macromolecules, 2016, 49, 224-233.                            | 4.8  | 40        |
| 16 | Competitive Adsorption of Plasma Proteins Using a Quartz Crystal Microbalance. ACS Applied<br>Materials & Interfaces, 2016, 8, 13207-13217.                                                                                          | 8.0  | 39        |
| 17 | Structural changes during deformation in carbon nanotube-reinforced polyacrylonitrile fibers.<br>Polymer, 2008, 49, 2133-2145.                                                                                                       | 3.8  | 36        |
| 18 | Self-Assembly and Critical Aggregation Concentration Measurements of ABA Triblock Copolymers<br>with Varying B Block Types: Model Development, Prediction, and Validation. Journal of Physical<br>Chemistry B, 2016, 120, 3666-3676. | 2.6  | 34        |

N SANJEEVA MURTHY

| #  | Article                                                                                                                                                                                               | IF        | CITATIONS            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|
| 19 | Fibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits. Journal of Materials Science: Materials in Medicine, 2017, 28, 79.                      | 3.6       | 33                   |
| 20 | X-ray diffraction and NMR studies of nylon 6/iodine/potassium iodide complexes and their transformation into the .gamma. crystalline phase. Macromolecules, 1990, 23, 1342-1346.                      | 4.8       | 32                   |
| 21 | Poly(ethylene terephthalate)-poly(caprolactone) block copolymer. I. Synthesis, reactive extrusion, and<br>fiber morphology. Journal of Applied Polymer Science, 1999, 74, 1858-1867.                  | 2.6       | 31                   |
| 22 | Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms. Soft Matter, 2010, 6, 5196.      | 2.7       | 31                   |
| 23 | Effect of melt temperature and skin-core morphology on the mechanical performance of nylon 6.<br>Polymer Engineering and Science, 2002, 42, 940-950.                                                  | 3.1       | 27                   |
| 24 | Effects of Terminal Sterilization on PEGâ€Based Bioresorbable Polymers Used in Biomedical Applications.<br>Macromolecular Materials and Engineering, 2016, 301, 1211-1224.                            | 3.6       | 27                   |
| 25 | Development of hybrid scaffolds with natural extracellular matrix deposited within synthetic polymeric fibers. Journal of Biomedical Materials Research - Part A, 2017, 105, 2162-2170.               | 4.0       | 24                   |
| 26 | A comparison of degradable synthetic polymer fibers for anterior cruciate ligament reconstruction.<br>Journal of Biomedical Materials Research - Part A, 2010, 93A, 738-747.                          | 4.0       | 23                   |
| 27 | Structure of the iodine columns in iodinated nylon-6. Journal of Polymer Science, Part B: Polymer Physics, 1986, 24, 133-141.                                                                         | 2.1       | 22                   |
| 28 | International Journal of Polymeric Materials and Polymeric Biomaterials, 1998, 42, 275-283.                                                                                                           | 3.4       | 22                   |
| 29 | The interaction of ultrasound with particulate composites. Journal of the Acoustical Society of America, 2006, 119, 1449-1456.                                                                        | 1.1       | 22                   |
| 30 | UV laser-ablated surface textures as potential regulator of cellular response. Biointerphases, 2010, 5,<br>53-59.                                                                                     | 1.6       | 22                   |
| 31 | Effect of molecular orientation on the crystallization and melting behavior in poly(ethylene) Tj ETQq1 1 0.78431                                                                                      | 4 rgBT /O | verlock 10 Tfl<br>21 |
| 32 | Substrate micropatterns produced by polymer demixing regulate focal adhesions, actin anisotropy, and lineage differentiation of stem cells. Acta Biomaterialia, 2018, 76, 21-28.                      | 8.3       | 21                   |
| 33 | Smallâ€angle Xâ€ray scattering investigation of carbon nanotubeâ€reinforced polyacrylonitrile fibers<br>during deformation. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2394-2409. | 2.1       | 20                   |
| 34 | ACL reconstruction using a novel hybrid scaffold composed of polyarylate fibers and collagen fibers.<br>Journal of Biomedical Materials Research - Part A, 2012, 100A, 2913-2920.                     | 4.0       | 18                   |
| 35 | Wholly Aromatic Ether-imides. Potential Materials for n-Type Semiconductors. Chemistry of Materials, 2004, 16, 966-974.                                                                               | 6.7       | 17                   |
| 36 | Structure of Hydrated Poly( <scp>d</scp> , <scp>l</scp> -lactic acid) Studied with X-ray Diffraction and<br>Molecular Simulation Methods. Macromolecules, 2012, 45, 4896-4906.                        | 4.8       | 17                   |

N SANJEEVA MURTHY

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Achieving molecular orientation in thermally extruded 3D printed objects. Biofabrication, 2019, 11, 045004.                                                                                                                                                   | 7.1 | 17        |
| 38 | Tunable Surface Repellency Maintains Stemness and Redox Capacity of Human Mesenchymal Stem Cells.<br>ACS Applied Materials & Interfaces, 2017, 9, 22994-23006.                                                                                                | 8.0 | 16        |
| 39 | Observation of a new high-temperature transition in polytetrafluoroethylene. Macromolecules, 1990, 23, 2488-2494.                                                                                                                                             | 4.8 | 14        |
| 40 | Fibrillar Structure and its Relevance to Diffusion, Shrinkage, and Relaxation Processes in Nylon<br>Fibers. Textile Reseach Journal, 1997, 67, 511-520.                                                                                                       | 2.2 | 14        |
| 41 | Structure of Biodegradable Films at Aqueous Surfaces: X-ray Diffraction and Spectroscopy Studies of Polylactides and Tyrosine-Derived Polycarbonates. Langmuir, 2013, 29, 11420-11430.                                                                        | 3.5 | 13        |
| 42 | Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery. Soft Matter, 2018, 14, 1327-1335.                                                                                  | 2.7 | 13        |
| 43 | Multilayered crystalline structures and liquid crystalline phases in a mesogen with siloxane tails.<br>Liquid Crystals, 1995, 19, 557-563.                                                                                                                    | 2.2 | 12        |
| 44 | Adsorption of Fibrinogen and Fibronectin on Elastomeric Poly(butylene succinate) Copolyesters.<br>Langmuir, 2019, 35, 8850-8859.                                                                                                                              | 3.5 | 12        |
| 45 | Glass Transition Temperature and the Nature of the Amorphous Phase in Semicrystalline Polymers:<br>Effects of Drawing, Annealing and Hydration in Polyamide 6. International Journal of Polymeric<br>Materials and Polymeric Biomaterials, 2001, 50, 429-444. | 3.4 | 11        |
| 46 | Elliptical Smallâ€Angle Xâ€Ray Scattering Patterns from Aligned Lamellar Arrays. Journal of Polymer<br>Science, Part B: Polymer Physics, 2016, 54, 308-318.                                                                                                   | 2.1 | 11        |
| 47 | Calcium phosphate enriched synthetic tyrosine-derived polycarbonate – dicalcium phosphate<br>dihydrate polymer scaffolds for enhanced bone regeneration. Materialia, 2020, 9, 100616.                                                                         | 2.7 | 11        |
| 48 | Amorphous orientation and its relationship to processing stages of blended<br>polypropylene/polyethylene fibers. Journal of Applied Polymer Science, 2008, 108, 4047-4057.                                                                                    | 2.6 | 10        |
| 49 | Construction and Validation of All-Atom Bulk-Phase Models of Amorphous Polymers Using the TIGER2/TIGER3 Empirical Sampling Method. Macromolecules, 2011, 44, 5452-5464.                                                                                       | 4.8 | 10        |
| 50 | Central smallâ€angle diffuse scattering from fibers is made of two components. Journal of Polymer<br>Science, Part B: Polymer Physics, 2012, 50, 797-804.                                                                                                     | 2.1 | 10        |
| 51 | A multilayered scaffold for regeneration of smooth muscle and connective tissue layers. Journal of<br>Biomedical Materials Research - Part A, 2021, 109, 733-744.                                                                                             | 4.0 | 10        |
| 52 | Structure of intermediate filament assembly in hair deduced from hydration studies using small-angle<br>neutron scattering. Journal of Structural Biology, 2019, 206, 295-304.                                                                                | 2.8 | 9         |
| 53 | Tyrosineâ€derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix<br>deposition when used to bridge segmental nerve defects in swine. Journal of Biomedical Materials<br>Research - Part A, 2021, 109, 1183-1195.              | 4.0 | 9         |
| 54 | Comprehensive hydrolytic degradation study of a new poly(ester-amide) used for total meniscus replacement. Polymer Degradation and Stability, 2021, 190, 109617.                                                                                              | 5.8 | 9         |

N SANJEEVA MURTHY

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Asymmetric flavone-based liquid crystals: synthesis and properties. Liquid Crystals, 2017, 44, 1436-1449.                                                                                                 | 2.2 | 8         |
| 56 | A step toward engineering thick tissues: Distributing microfibers within 3D printed frames. Journal of<br>Biomedical Materials Research - Part A, 2020, 108, 581-591.                                     | 4.0 | 8         |
| 57 | Temperature-Activated PEG Surface Segregation Controls the Protein Repellency of Polymers.<br>Langmuir, 2019, 35, 9769-9776.                                                                              | 3.5 | 7         |
| 58 | Crystal Structure and Properties of N6/AMCC Copolymer from Theory and Fiber XRD. Macromolecules, 2003, 36, 900-907.                                                                                       | 4.8 | 6         |
| 59 | Nonsolvent-induced morphological changes and nanoporosity in poly( <scp>l</scp> -lactide) films.<br>Soft Matter, 2018, 14, 1492-1498.                                                                     | 2.7 | 6         |
| 60 | Simulation of SAXS patterns from oriented lamellar structures and their elliptical trajectories.<br>Polymer, 2021, 220, 123566.                                                                           | 3.8 | 5         |
| 61 | Control of Drug Release from Microparticles by Tuning Their Crystalline Textures: A<br>Structure–Activity Study. ACS Applied Polymer Materials, 2021, 3, 6548-6561.                                       | 4.4 | 5         |
| 62 | Disassembly of Nanospheres with a PEG Shell upon Adsorption onto PEGylated Substrates. Langmuir, 2020, 36, 232-241.                                                                                       | 3.5 | 4         |
| 63 | Structural Investigations of Polycarbonates whose Mechanical and Erosion Behavior Can Be<br>Controlled by Their Isomer Sequence. Macromolecules, 2020, 53, 9878-9889.                                     | 4.8 | 4         |
| 64 | Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.<br>Journal of Cosmetic Science, 2014, 65, 37-48.                                                       | 0.1 | 4         |
| 65 | Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin<br>Release. Journal of Functional Biomaterials, 2012, 3, 745-759.                                     | 4.4 | 3         |
| 66 | A method to deliver patterned electrical impulses to Schwann cells cultured on an artificial axon.<br>Neural Regeneration Research, 2019, 14, 1052.                                                       | 3.0 | 3         |
| 67 | Experimental observation of the onset of finite domain boundaries in a simple two-phase system by small-angle x-ray scattering. Macromolecules, 1983, 16, 1943-1944.                                      | 4.8 | 2         |
| 68 | Carbohydrate-Derived Amphiphilic Macromolecules: A Biophysical Structural Characterization and<br>Analysis of Binding Behaviors to Model Membranes. Journal of Functional Biomaterials, 2015, 6, 171-191. | 4.4 | 2         |
| 69 | Monitoring the Viscoelastic Properties of Skin in Liquid Environments Using Quartz Crystal<br>Microbalance. Journal of Pharmaceutical Sciences, 2011, 100, 530-535.                                       | 3.3 | 1         |
| 70 | Thermal processing of a degradable carboxylic acidâ€functionalized polycarbonate into scaffolds for<br>tissue engineering. Polymer Engineering and Science, 2021, 61, 2012-2022.                          | 3.1 | 1         |
| 71 | Simultaneous Thermal and Structural Measurements of Oriented Polymers by DSC/XRD Using an Area<br>Detector. Advances in X-ray Analysis, 1988, 32, 617-623.                                                | 0.0 | 1         |
| 72 | Analysis of X-Ray Diffraction Scans of Poorly Crystallized Semrcrystallkve Polymers. Advances in<br>X-ray Analysis, 1995, 39, 505-514.                                                                    | 0.0 | 0         |

| #  | Article                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Polymer Texture Influences Cell Responses in Osteogenic Microparticles. Cellular and Molecular<br>Bioengineering, 0, , . | 2.1 | 0         |