
Marek PÃ³Å,rolniczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3507597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the atmospheric conditions on PM10 concentrations in PoznaÅ,,, Poland. Journal of Atmospheric Chemistry, 2017, 74, 115-139.	1.4	53
2	Application of machine learning to large hail prediction - The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmospheric Research, 2019, 227, 249-262.	1.8	47
3	The urban heat island in the city of PoznaÅ,, as derived from Landsat 5 TM. Theoretical and Applied Climatology, 2017, 128, 769-783.	1.3	44
4	Derecho Evolving from a Mesocyclone—A Study of 11 August 2017 Severe Weather Outbreak in Poland: Event Analysis and High-Resolution Simulation. Monthly Weather Review, 2019, 147, 2283-2306.	0.5	41
5	Human-biometeorological conditions in the southern Baltic coast based on the universal thermal climate index (UTCI). Theoretical and Applied Climatology, 2018, 134, 363-379.	1.3	34
6	Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology, 2019, 137, 1909-1923.	1.3	34
7	Circulation Conditions' Effect on the Occurrence of Heat Waves in Western and Southwestern Europe. Atmosphere, 2017, 8, 31.	1.0	33
8	The influence of atmospheric circulation on the intensity of urban heat island and urban cold island in PoznaÅ,,, Poland. Theoretical and Applied Climatology, 2017, 127, 611-625.	1.3	31
9	Homogenization of air temperature and its long-term trends in PoznaÅ,, (Poland) for the period 1848–2016. Theoretical and Applied Climatology, 2019, 136, 1357-1370.	1.3	28
10	Thermal Conditions in the City of Poznań (Poland) during Selected Heat Waves. Atmosphere, 2018, 9, 11.	1.0	15
11	Atmospheric circulation conditions during winter warm spells in Central Europe. Natural Hazards, 2019, 96, 1413-1428.	1.6	13
12	If not NAO then what?—regional circulation patterns governing summer air temperatures in Poland. Theoretical and Applied Climatology, 2019, 136, 1325-1337.	1.3	11
13	The occurrence of heat waves in Europe and their circulation conditions. Geografie-Sbornik CGS, 2019, 124, 1-17.	0.3	11
14	Cold Waves in Poznań (Poland) and Thermal Conditions in the City during Selected Cold Waves. Atmosphere, 2018, 9, 208.	1.0	9
15	The influence of weather and level of observer expertise on suburban landscape perception. Building and Environment, 2021, 202, 108016.	3.0	9
16	Atmospheric Forcing of Coastal Upwelling in the Southern Baltic Sea Basin. Atmosphere, 2019, 10, 327.	1.0	8
17	The Impact of Biometeorological Conditions on the Perception of Landscape. Atmosphere, 2019, 10, 264.	1.0	7
18	Determination of Surface Precipitation Type Based on the Data Fusion Approach. Advances in Atmospheric Sciences, 2021, 38, 387-399.	1.9	6

2

Marek PóÅ,rolniczak

#	Article	IF	CITATIONS
19	Atmospheric forcing of upwelling along the south-eastern Baltic coast. Baltica, 2018, 31, 73-85.	0.1	5
20	Regional circulation patterns inducing coastal upwelling in the Baltic Sea. Theoretical and Applied Climatology, 2021, 144, 905-916.	1.3	3
21	An estimation of the accuracy of the topoclimate range based on the land surface temperature with reference to a case study of the Drawa National Park, Poland. Theoretical and Applied Climatology, 2020, 142, 369-379.	1.3	2
22	Międzydobowe zmiany ciśnienia atmosferycznego w Poznaniu na tle typów cyrkulacji GWL (Grossweterlagen) = Interdiurnal air-pressure changes in PoznaÅ,, as set against GWL (Grossweterlagen) circulation types. Przeglad Geograficzny, 2012, 84, 423-435.	0.2	2
23	Sensible temperature at the Å e ba Sandbar (SÅ,owiÅ,,ski National Park) on selected days of the 2010 summer season. Quaestiones Geographicae, 2011, 30, 83-99.	0.2	1
24	Influence of Atmospheric Circulation on Cloudiness and Cloud Types in Petuniabukta and Svalbard-Lufthavn in Summer 2016. Atmosphere, 2021, 12, 724.	1.0	1
25	Evaluation of Thermal Conditions in Jeziory (The Wielkopolski National Park). Quaestiones Geographicae, 2013, 32, 33-42.	0.2	0
26	Initial Assessment of the Weather Research and Forecasting Model for Forecasting Bioclimatic Conditions During Breeze Circulation – Case Study of the SÅ,owiÅ,,ski National Park. Quaestiones Geographicae, 2013, 32, 5-14.	0.2	0