
Martin A Hubbe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3506882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insisting upon Meaningful Results from Adsorption Experiments. Separation and Purification Reviews, 2022, 51, 212-225.	5.5	21
2	A Critical Review on Natural Fibers Modifications by Graft Copolymerization for Wastewater Treatment. Journal of Polymers and the Environment, 2022, 30, 1199-1227.	5.0	4
3	Recent advances in metal organic framework and cellulose nanomaterial composites. Coordination Chemistry Reviews, 2022, 461, 214496.	18.8	55
4	Effect of plasticizers and polymer blends for processing softwood kraft lignin as carbon fiber precursors. Cellulose, 2021, 28, 1039-1053.	4.9	7
5	Spraying starch on the Fourdrinier— An option between wet end starch and the size press. Tappi Journal, 2021, 20, 21-26.	0.5	1
6	Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. Advanced Materials, 2021, 33, e2006052.	21.0	143
7	Some challenges in the naming and measuring of nanocellulose. BioResources, 2021, 16, 4671-4674.	1.0	3
8	Soft mechanical treatments of recycled fibers using a high-shear homogenizer for tissue and hygiene products. Cellulose, 2021, 28, 7981-7994.	4.9	10
9	Recent developments in colorimetric and optical indicators stimulated by volatile base nitrogen to monitor seafood freshness. Food Packaging and Shelf Life, 2021, 28, 100634.	7.5	42
10	Hydrothermal and mechanically generated hemp hurd nanofibers for sustainable barrier coatings/films. Industrial Crops and Products, 2021, 168, 113582.	5.2	28
11	Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends in Food Science and Technology, 2021, 115, 461-485.	15.1	122
12	Energy efficiency challenges in pulp and paper manufacturing: A tutorial review. BioResources, 2021, 16, 8567-8639.	1.0	2
13	Crude Wood Rosin and Its Derivatives as Hydrophobic Surface Treatment Additives for Paper and Packaging. ACS Omega, 2020, 5, 31559-31566.	3.5	7
14	Lipase-catalyzed laurate esterification of cellulose nanocrystals and their use as reinforcement in PLA composites. Cellulose, 2020, 27, 6263-6273.	4.9	23
15	Accelerated Aging of Deacidified and Untreated Book Paper in 1967 Compared with 52 Years of Natural Aging. Restaurator, 2020, 41, 131-152.	0.2	4
16	From nanocellulose to wood particles: A review of particle size vs. the properties of plastic composites reinforced with cellulose-based entities. BioResources, 2020, 15, 2030-2081.	1.0	22
17	Using micro- and nanofibrillated cellulose as a means to reduce weight of paper products: A review. BioResources, 2020, 15, 4553-4590.	1.0	5
18	Using micro- and nanofibrillated cellulose as a means to reduce weight of paper products: A review. BioResources, 2020, 15, 4553-4590.	1.0	33

#	Article	IF	CITATIONS
19	Self-assembly of alkyl chains of fatty acids in papermaking systems: A review of related pitch issues, hydrophobic sizing, and pH effects. BioResources, 2020, 15, 4591-4635.	1.0	3
20	Rate-limiting mechanisms of water removal during the formation, vacuum dewatering, and wet-pressing of paper webs: A review. BioResources, 2020, 15, 9672-9755.	1.0	8
21	Cationic emulsions of maleic anhydride derivatives of oleic acid and abietic acid for hydrophobic sizing of paper. Tappi Journal, 2020, 19, 281-290.	0.5	0
22	Effects of metal ions and wood pitch on retention and physical properties of TMP. Nordic Pulp and Paper Research Journal, 2020, 35, 649-659.	0.7	1
23	Natural, accelerated, and simulated weathering of wood: A Review. BioResources, 2020, 15, 9998-10062.	1.0	30
24	Flexible and Pressure-Responsive Sensors from Cellulose Fibers Coated with Multiwalled Carbon Nanotubes. ACS Applied Electronic Materials, 2019, 1, 1179-1188.	4.3	46
25	Highly conductive carbon nanotubes and flexible cellulose nanofibers composite membranes with semi-interpenetrating networks structure. Carbohydrate Polymers, 2019, 222, 115013.	10.2	20
26	Impact of oxidative carbonization on structure development of loblolly pine-derived biochar investigated by nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. Diamond and Related Materials, 2019, 96, 140-147.	3.9	10
27	Nanocellulose Applications in Papermaking. Biofuels and Biorefineries, 2019, , 61-96.	0.5	10
28	High-Strength Antibacterial Chitosan–Cellulose Nanocrystal Composite Tissue Paper. Langmuir, 2019, 35, 104-112.	3.5	51
29	Review of the Mechanistic Roles of Nanocellulose, Cellulosic Fibers, and Hydrophilic Cellulose Derivatives in Cellulose-Based Absorbents. Polymers and Polymeric Composites, 2019, , 123-153.	0.6	2
30	Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance. Carbohydrate Polymers, 2019, 206, 281-288.	10.2	92
31	Nanopolysaccharides in Barrier Composites. Springer Series in Biomaterials Science and Engineering, 2019, , 321-366.	1.0	3
32	Lignin recovery from spent alkaline pulping liquors using acidification, membrane separation, and related processing steps: A review. BioResources, 2019, 14, 2300-2351.	1.0	56
33	Analytical staining of cellulosic materials: A review. BioResources, 2019, 14, 7387-7464.	1.0	23
34	Review of electrically conductive composites and films containing cellulosic fibers or nanocellulose. BioResources, 2019, 14, 7494-7542.	1.0	31
35	Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources, 2019, 14, 7582-7626.	1.0	162
36	Citrus-based hydrocolloids: A water retention aid and rheology modifier for paper coatings. Tappi Journal, 2019, 18, 443-450.	0.5	1

#	Article	IF	CITATIONS
37	High performance nanocellulose-based composite coatings for oil and grease resistance. Cellulose, 2018, 25, 3377-3391.	4.9	39
38	The performance of chitosan with bentonite microparticles as wet-end additive system for paper reinforcement. Carbohydrate Polymers, 2018, 179, 328-332.	10.2	22
39	Recovery of Inorganic Compounds from Spent Alkaline Pulping Liquor by Eutectic Freeze Crystallization and Supporting Unit Operations: A Review. BioResources, 2018, 13, .	1.0	10
40	Towards Rational Utilization of Indigenous Plant Resources. BioResources, 2018, 13, 7172-7174.	1.0	1
41	Review of the Mechanistic Roles of Nanocellulose, Cellulosic Fibers, and Hydrophilic Cellulose Derivatives in Cellulose-Based Absorbents. Polymers and Polymeric Composites, 2018, , 1-31.	0.6	0
42	Thermal Depolymerization of Biomass with Emphasis on Gasifier Design and Best Method for Catalytic Hot Gas Conditioning. BioResources, 2018, 13, 4630-4727.	1.0	16
43	Optimizing the mechanical properties of papers reinforced with refining and layer-by-layer treated recycled fibers using response surface methodology. Carbohydrate Polymers, 2018, 200, 391-399.	10.2	4
44	Synergy of Silane and Polyacrylate Treatments to Prepare Thermally Stable and Hydrophobic Cellulose Nanocrystals. Chemistry Letters, 2018, 47, 1272-1275.	1.3	2
45	Nonaqueous solution deacidification treatments to prolong the storage life of acidic books: A review of mechanistic and process aspects. BioResources, 2018, 13, 7096-7136.	1.0	9
46	Wet-end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk. Tappi Journal, 2018, 17, 395-403.	0.5	13
47	Effect of Lipoxygenase Oxidation on Surface Deposition of Unsaturated Fatty Acids. Langmuir, 2017, 33, 4559-4566.	3.5	5
48	Lipoxygenase-mediated peroxidation of model plant extractives. Industrial Crops and Products, 2017, 104, 253-262.	5.2	10
49	A Review of Waterâ€Resistant Hemicelluloseâ€Based Materials: Processing and Applications. ChemSusChem, 2017, 10, 305-323.	6.8	146
50	Charge reversal system with cationized cellulose nanocrystals to promote dewatering of a cellulosic fiber suspension. Cellulose, 2017, 24, 4821-4830.	4.9	10
51	Soy Proteins As a Sustainable Solution to Strengthen Recycled Paper and Reduce Deposition of Hydrophobic Contaminants in Papermaking: A Bench and Pilot-Plant Study. ACS Sustainable Chemistry and Engineering, 2017, 5, 7211-7219.	6.7	22
52	Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops and Products, 2017, 95, 574-582.	5.2	268
53	Deacidification of Acidic Books and Paper by Means of Non-aqueous Dispersions of Alkaline Particles: A Review Focusing on Completeness of the Reaction. BioResources, 2017, 12, .	1.0	17
54	Critical Links Governing Performance of Self-binding and Natural Binders for Hot-pressed Reconstituted Lignocellulosic Board without Added Formaldehyde: A Review. BioResources, 2017, 13, .	1.0	24

#	Article	IF	CITATIONS
55	Rheology of nanocellulose-rich aqueous suspensions: A Review. BioResources, 2017, 12, 9556-9661.	1.0	196
56	Paper or Plastic? Yes, but Not as a Mixture. BioResources, 2016, 11, 5656-5657.	1.0	5
57	My Production Facility, My Laboratory of Discovery. BioResources, 2016, 11, 8116-8118.	1.0	1
58	Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review. BioResources, 2016, 12, 2143-2233.	1.0	189
59	Wastewater Treatment and Reclamation: A Review of Pulp and Paper Industry Practices and Opportunities. BioResources, 2016, 11, 7953-8091.	1.0	141
60	Wet-Laid Nonwovens Manufacture – Chemical Approaches Using Synthetic and Cellulosic Fibers. BioResources, 2016, 11, .	1.0	30
61	Intact and broken cellulose nanocrystals as model nanoparticles to promote dewatering and fine-particle retention during papermaking. Cellulose, 2016, 23, 3951-3962.	4.9	20
62	Breakup of Agglomerated Clusters of Cellulosic Fines and CaCO3Particles Exposed to Hydrodynamic Stress. Journal of Dispersion Science and Technology, 2016, 37, 836-845.	2.4	0
63	Catalysts inspired by life. Biofuel Research Journal, 2016, 3, 430-430.	13.3	6
64	Alkyl ketene dimer (AKD) sizing of paper under simplified treatment conditions. Tappi Journal, 2016, 15, 545-552.	0.5	16
65	Passivation of pressure sensitive adhesive stickies by addition of acrylic fibers to OCC pulp before papermaking. Tappi Journal, 2016, 15, 631-639.	0.5	Ο
66	Oops, I thought that those books had been deacidified. BioResources, 2015, 10, 6305-6309.	1.0	7
67	Green Modification of Surface Characteristics of Cellulosic Materials at the Molecular or Nano Scale: A Review. BioResources, 2015, 10, .	1.0	65
68	Fillers for Papermaking: A Review of their Properties, Usage Practices, and their Mechanistic Role. BioResources, 2015, 11, .	1.0	107
69	Contact Angles and Wettability of Cellulosic Surfaces: A Review of Proposed Mechanisms and Test Strategies. BioResources, 2015, 10, .	1.0	81
70	Lignin as a value-added byproduct to improve the economics of lignoethanol?. Biofuel Research Journal, 2015, 2, 295-295.	13.3	3
71	Heteroagglomeration as a mechanism of retaining CaCO3 particles on the fibrils of cellulosic fines: A study by laser light diffraction and microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 525-531.	4.7	5
72	Enhancement of paper dry strength by carboxymethylated β-d-glucan from oat as additive. Holzforschung, 2014, 68, 257-263.	1.9	22

#	Article	IF	CITATIONS
73	Improving Stability and Sizing Performance of Alkenylsuccinic Anhydride (ASA) Emulsion by Using Melamine-Modified Laponite Particles as Emulsion Stabilizer. Industrial & Engineering Chemistry Research, 2014, 53, 12330-12338.	3.7	22
74	ASA-in-water emulsions stabilized by laponite nanoparticles modified with tetramethylammonium chloride. Chemical Engineering Science, 2014, 116, 682-693.	3.8	30
75	TEMPO-mediated oxidation of oat β-d-glucan and its influences on paper properties. Carbohydrate Polymers, 2014, 99, 617-623.	10.2	25
76	Puzzling Aspects of the Hydrophobic Sizing of Paper and its Inter-Fiber Bonding Ability. BioResources, 2014, 9, .	1.0	9
77	Cellulosic substrates for removal of pollutants from aqueous systems: A review. Part 4. Dissolved petrochemical compounds. BioResources, 2014, 9, 7782-7925.	1.0	26
78	Cationization of oat \hat{I}^2 -D glucan as a dry-strength additive for paper. Tappi Journal, 2014, 13, 57-64.	0.5	16
79	Lignocellulose Biodegradation in Composting. Sustainable Development and Biodiversity, 2014, , 43-66.	1.7	3
80	Zipping Backwards the Other Way $\hat{a} \in$ " Yet Another Unique Aspect of Cellulose. BioResources, 2014, 9, .	1.0	0
81	What Next for Wood Construction/Demolition Debris?. BioResources, 2014, 10, .	1.0	0
82	Novel Hemicellulose–Chitosan Biosorbent for Water Desalination and Heavy Metal Removal. ACS Sustainable Chemistry and Engineering, 2013, 1, 1102-1109.	6.7	124
83	On the Surface Interactions of Proteins with Lignin. ACS Applied Materials & Interfaces, 2013, 5, 199-206.	8.0	71
84	Water-Wettable Polypropylene Fibers by Facile Surface Treatment Based on Soy Proteins. ACS Applied Materials & Interfaces, 2013, 5, 6541-6548.	8.0	37
85	Life in the Forest Canopy. BioResources, 2013, 8, 1508-1509.	1.0	0
86	Enhanced Absorbent Products Incorporating Cellulose and Its Derivatives: A Review. BioResources, 2013, 8, .	1.0	45
87	Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review. 3. Spilled Oil and Emulsified Organic Liquids. BioResources, 2013, 8, .	1.0	66
88	Prospects for Maintaining Strength of Paper and Paperboard Products While Using Less Forest Resources: A Review. BioResources, 2013, 9, .	1.0	42
89	On Paper – A celebration of two millennia of the work and craft of papermakers. BioResources, 2013, 8, 4791-4792.	1.0	0
90	Recycling potential of unbleached and bleached chemical pulps from juvenile and mature wood of <i>Populus deltoides</i> . Holzforschung, 2012, 66, 155-161.	1.9	13

#	Article	IF	CITATIONS
91	Survey of Soy Protein Flour as a Novel Dry Strength Agent for Papermaking Furnishes. Journal of Agricultural and Food Chemistry, 2012, 60, 9828-9833.	5.2	17
92	Oil Spills Abatement: Factors Affecting Oil Uptake by Cellulosic Fibers. Environmental Science & Technology, 2012, 46, 7725-7730.	10.0	55
93	Adsorption of Glycinin and β-Conglycinin on Silica and Cellulose: Surface Interactions as a Function of Denaturation, pH, and Electrolytes. Biomacromolecules, 2012, 13, 387-396.	5.4	25
94	CELLULOSIC SUBSTRATES FOR REMOVAL OF POLLUTANTS FROM AQUEOUS SYSTEMS: A REVIEW. 2. DYES. BioResources, 2012, 7, .	1.0	65
95	DISSOLVED AND COLLOIDAL SUBSTANCES (DCS) AND THE CHARGE DEMAND OF PAPERMAKING PROCESS WATERS AND SUSPENSIONS: A REVIEW. BioResources, 2012, 7, .	1.0	28
96	Capillary flooding of wood with microemulsions from Winsor I systems. Journal of Colloid and Interface Science, 2012, 381, 171-179.	9.4	25
97	Enzymatic Treatment as a Pre‣tep to Remove Cellulose Films from Sensors. Macromolecular Symposia, 2011, 299-300, 107-112.	0.7	0
98	Cellulosic substrates for removal of pollutants from aqueous systems: A review. 1. Metals. BioResources, 2011, 6, 2161-2287.	1.0	136
99	Permeation of a cationic polyelectrolyte into mesoporous silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 1-6.	4.7	11
100	Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioResources, 2011, 6, 4370-4388.	1.0	110
101	Permeation of a cationic polyelectrolyte into meso-porous silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 1-6.	4.7	11
102	Permeation of a cationic polyelectrolyte into mesoporous silica. Part 2. Effects of time and pore size on streaming potential. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 7-15.	4.7	4
103	Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. BioResources, 2010, 5, 2808-2854.	1.0	138
104	Engineering of a Wet-End Additives Program Relative to Process Parameters and to the Physical and Optical Properties of Filled Paper. Industrial & Engineering Chemistry Research, 2010, 49, 5644-5653.	3.7	9
105	Effect of Charge Asymmetry on Adsorption and Phase Separation of Polyampholytes on Silica and Cellulose Surfaces. Journal of Physical Chemistry B, 2010, 114, 719-727.	2.6	32
106	Deacidification for the conservation and preservation of paper-based works: A review. BioResources, 2010, 5, 1955-2023.	1.0	107
107	Investigation of Adsorption Behaviors of Amphoteric Polyacrylamide on Pulp Fiber. Kami Pa Gikyoshi/Japan Tappi Journal, 2010, 64, 595-603.	0.1	0
108	Handmade paper: A review of its history, craft, and science. BioResources, 2009, 4, 1736-1792.	1.0	61

#	Article	IF	CITATIONS
109	Permeation of polyelectrolytes and other solutes into the pore spaces of water-swollen cellulose: A review. BioResources, 2009, 4, 1222-1262.	1.0	36
110	Evaluation of Adsorbed Polyampholyte Layers by Using Quartz Crystal Microbalance. Computer Aided Chemical Engineering, 2009, 27, 1929-1934.	0.5	2
111	Morphologies of synthetic mineral microparticles for papermaking as a function of synthetic conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339, 118-125.	4.7	2
112	Importance of Cellulosic Fines Relative to the Dewatering Rates of Fiber Suspensions. Industrial & Engineering Chemistry Research, 2009, 48, 9106-9112.	3.7	18
113	Permeability reduction phenomena in packed beds, fiber mats, and wet webs of paper exposed to flow of liquids and suspensions: A review. BioResources, 2009, 4, 405-451.	1.0	30
114	Retention aid polymer interactions with cellulosic surfaces and suspensions: A review. BioResources, 2009, 4, 850-906.	1.0	80
115	Polyelectrolyte titrations of synthetic mineral microparticle suspensions to evaluate charge characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331, 175-182.	4.7	6
116	A colloidal probe microscopy study of cellulose/gypsum interactions. Materials Characterization, 2008, 59, 144-150.	4.4	8
117	Effects of Process Variables on Poly-Aluminum Chloride (PAC)-Rosin Sizing Performance under Neutral Papermaking Conditions. Industrial & Engineering Chemistry Research, 2008, 47, 4302-4307.	3.7	5
118	Cellulosic nanocomposites. A review. BioResources, 2008, 3, 929-980.	1.0	729
119	Paper's appearance: A review. BioResources, 2008, 3, 627-665.	1.0	64
120	Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension: A review. BioResources, 2008, 3, 1419-1491.	1.0	49
121	Paper's resistance to wetting - A review of internal sizing chemicals and their effects. BioResources, 2007, 2, 106-145.	1.0	95
122	What happens to cellulosic fibers during papermaking and recycling? A review. BioResources, 2007, 2, 739-788.	1.0	217
123	Review of factors affecting the release of water from cellulosic fibers during paper manufacture. BioResources, 2007, 2, 500-533.	1.0	101
124	Flocculation and redispersion of cellulosic fiber suspensions: A review of effects of hydrodynamic shear and polyelectrolytes. BioResources, 2007, 2, 296-331.	1.0	63
125	Distinctive electrokinetic behavior of nanoporous silica particles treated with cationic polyelectrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292, 271-278.	4.7	9
126	Charge and the dry-strength performance of polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 33-40.	4.7	10

#	Article	IF	CITATIONS
127	Charge and the dry-strength performance of polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 23-32.	4.7	22
128	Consequences of the nanoporosity of cellulosic fibers on their streaming potential and their interactions with cationic polyelectrolytes. Cellulose, 2007, 14, 655-671.	4.9	50
129	Incinerate, recycle, or wash and reuse. BioResources, 2007, 2, 1-2.	1.0	30
130	Appropriate technology in an age of renewables. BioResources, 2007, 2, 146-147.	1.0	11
131	Control of tacky deposits on paper machines – A review. Nordic Pulp and Paper Research Journal, 2006, 21, 154-171.	0.7	56
132	Bonding between cellulosic fibers in the absence and presence of dry-strength agents – A review. BioResources, 2006, 1, 281-318.	1.0	158
133	Colloidal effects of acrylamide polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 74-81.	4.7	13
134	Colloidal effects of acrylamide polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 89-95.	4.7	18
135	Sensing the electrokinetic potential of cellulosic fiber surfaces. BioResources, 2006, 1, 116-149.	1.0	36
136	Prospects for Biodiesel as a Byproduct of Wood Pulping - A Review. BioResources, 2006, 1, 150-171.	1.0	38
137	Aspects of retention and formation. Nordic Pulp and Paper Research Journal, 2006, 21, 638-645.	0.7	9
138	From here to sustainability. BioResources, 2006, 1, 172-173.	1.0	2
139	The Dispersion Science of Papermaking. Journal of Dispersion Science and Technology, 2005, 25, 713-732.	2.4	47
140	Effects of Charge Ratios and Cationic Polymer Nature on Polyelectrolyte Complex Deposition onto Cellulose. Industrial & Engineering Chemistry Research, 2005, 44, 3068-3074.	3.7	33
141	Dependency of polyelectrolyte complex stoichiometry on the order of addition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 246, 71-79.	4.7	7
142	Dependency of polyelectrolyte complex stoichiometry on the order of addition2. Aluminum chloride and poly-vinylsulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 246, 71-79.	4.7	9
143	Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and poly-base. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 223, 215-230.	4.7	99
144	Development and evaluation of an automated streaming potential measurement device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 194, 221-232.	4.7	25

#	Article	IF	CITATIONS
145	Reversibility of polymer-induced fiber flocculation by shear. 2. Multi-component chemical treatments. Nordic Pulp and Paper Research Journal, 2001, 16, 369-375.	0.7	9
146	Reversibility of polymer-induced fiber flocculation by shear. 1. Experimental methods. Nordic Pulp and Paper Research Journal, 2000, 15, 545-553.	0.7	14
147	Distribution characteristics of rosin size and their effect on the internal sizing of paper. Nordic Pulp and Paper Research Journal, 2000, 15, 416-421.	0.7	9
148	Detachment of colloidal hydrous oxide spheres from flat solids exposed to flow 3. Forces of adhesion. Colloids and Surfaces, 1987, 25, 311-324.	0.9	29
149	Detachment of colloidal hydrous oxide spheres from flat solids exposed to flow 4. Effect of polyelectrolytes. Colloids and Surfaces, 1987, 25, 325-339.	0.9	28
150	Detachment of colloidal hydrous oxide spheres from flat solids exposed to flow 1. Experimental system. Colloids and Surfaces, 1985, 16, 227-248.	0.9	45
151	Detachment of colloidal hydrous oxide spheres from flat solids exposed to flow 2. Mechanism of release. Colloids and Surfaces, 1985, 16, 249-270.	0.9	68
152	Theory of detachment of colloidal particles from flat surfaces exposed to flow. Colloids and Surfaces, 1984, 12, 151-178.	0.9	125
153	Adhesion and detachment of biological cellsin vitro. Progress in Surface Science, 1981, 11, 65-137.	8.3	51
154	Polarisation Resistance Corrosivity Test with a Correction for Resistivity. Corrosion Engineering Science and Technology, 1980, 15, 193-197.	0.3	1