List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3506496/publications.pdf Version: 2024-02-01

VIII IN CE

#	Article	IF	CITATIONS
1	Comparison of serum neurodegenerative biomarkers among hospitalized COVIDâ€19 patients versus nonâ€COVID subjects with normal cognition, mild cognitive impairment, or Alzheimer's dementia. Alzheimer's and Dementia, 2022, 18, 899-910.	0.4	87
2	Vascular mapping of the human hippocampus using Ferumoxytol-enhanced MRI. NeuroImage, 2022, 250, 118957.	2.1	6
3	Age-Related Tortuosity of Carotid and Vertebral Arteries: Quantitative Evaluation With MR Angiography. Frontiers in Neurology, 2022, 13, 858805.	1.1	10
4	Blood–brain barrier permeability in response to caffeine challenge. Magnetic Resonance in Medicine, 2022, 88, 2259-2266.	1.9	8
5	Bilateral Distance Partition of Periventricular and Deep White Matter Hyperintensities: Performance of the Method in the Aging Brain. Academic Radiology, 2021, 28, 1699-1708.	1.3	12
6	Performance Comparison of Compressed Sensing Algorithms for Accelerating T _{1Ï} Mapping of Human Brain. Journal of Magnetic Resonance Imaging, 2021, 53, 1130-1139.	1.9	3
7	Functional connectivity of the default mode, dorsal attention and fronto-parietal executive control networks in glial tumor patients. Journal of Neuro-Oncology, 2021, 152, 347-355.	1.4	16
8	Noncontrast assessment of blood–brain barrier permeability to water: Shorter acquisition, test–retest reproducibility, and comparison with contrastâ€based method. Magnetic Resonance in Medicine, 2021, 86, 143-156.	1.9	16
9	An Overview of Venous Abnormalities Related to the Development of Lesions in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 561458.	1.1	13
10	SuperDTI: Ultrafast DTI and fiber tractography with deep learning. Magnetic Resonance in Medicine, 2021, 86, 3334-3347.	1.9	26
11	Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO. NeuroImage: Clinical, 2021, 29, 102525.	1.4	13
12	Editorial: Update on Vascular Contributions to Age-Related Neurodegenerative Diseases and Cognitive Impairment - Research of ISNVD 2020 Meeting. Frontiers in Neurology, 2021, 12, 797486.	1.1	1
13	Upright versus supine MRI: effects of body position on craniocervical CSF flow. Fluids and Barriers of the CNS, 2021, 18, 61.	2.4	13
14	Detecting sub-voxel microvasculature with USPIO-enhanced susceptibility-weighted MRI at 7ÂT. Magnetic Resonance Imaging, 2020, 67, 90-100.	1.0	13
15	Prevention and control of COVID-19 in neurointerventional surgery: expert consensus from the Chinese Federation of Interventional and Therapeutic Neuroradiology (CFITN) and the International Society for Neurovascular Disease (ISNVD). Journal of NeuroInterventional Surgery, 2020, 12, 658-663.	2.0	10
16	Subvoxel vascular imaging of the midbrain using USPIO-Enhanced MRI. NeuroImage, 2020, 220, 117106.	2.1	17
17	Inside Cover Image. NMR in Biomedicine, 2020, 33, e3986.	1.6	0
18	Longitudinal ultra-high field MRI of brain lesions in neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2020, 42, 102066.	0.9	4

#	Article	IF	CITATIONS
19	The capability of detecting small vessels beyond the conventional MRI sensitivity using ironâ€based contrast agent enhanced susceptibility weighted imaging. NMR in Biomedicine, 2020, 33, e4256.	1.6	9
20	Blood Perfusion and Cellular Microstructural Changes Associated With Iron Deposition in Multiple Sclerosis Lesions. Frontiers in Neurology, 2019, 10, 747.	1.1	6
21	Measurement of bloodâ€brain barrier permeability using dynamic contrastâ€enhanced magnetic resonance imaging with reduced scan time. Magnetic Resonance in Medicine, 2018, 80, 1686-1696.	1.9	7
22	Nonâ€contrast MR imaging of bloodâ€brain barrier permeability to water. Magnetic Resonance in Medicine, 2018, 80, 1507-1520.	1.9	56
23	Susceptibility weighted imaging and quantitative susceptibility mapping of the cerebral vasculature using ferumoxytol. Journal of Magnetic Resonance Imaging, 2018, 47, 621-633.	1.9	27
24	Longitudinal study of multiple sclerosis lesions using ultra-high field (7T) multiparametric MR imaging. PLoS ONE, 2018, 13, e0202918.	1.1	36
25	The impact of hyperoxia on brain activity: A resting-state and task-evoked electroencephalography (EEG) study. PLoS ONE, 2017, 12, e0176610.	1.1	14
26	MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update. Radiology, 2016, 279, 693-707.	3.6	51
27	Neuromyelitis optica does not impact periventricular venous density versus healthy controls: a 7.0ÂTesla MRI clinical study. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 535-541.	1.1	9
28	MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e259.	3.1	38
29	Cerebral blood flow modulation insufficiency in brain networks in multiple sclerosis: A hypercapnia MRI study. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 2087-2095.	2.4	46
30	Iron and Non-Iron-Related Characteristics of Multiple Sclerosis and Neuromyelitis Optica Lesions at 7T MRI. American Journal of Neuroradiology, 2016, 37, 1223-1230.	1.2	61
31	The influence of mild carbon dioxide on brain functional homotopy using restingâ€state fMRI. Human Brain Mapping, 2015, 36, 3912-3921.	1.9	26
32	Magnetic Resonance Phase Alterations in Multiple Sclerosis Patients with Short and Long Disease Duration. PLoS ONE, 2015, 10, e0128386.	1.1	16
33	Intracranial Relationship Between Arterioles and Venules Size–Reply. JAMA Neurology, 2015, 72, 124.	4.5	0
34	Whole-Brain <i>N</i> -Acetylaspartate Concentration Is Preserved during Mild Hypercapnia Challenge. American Journal of Neuroradiology, 2015, 36, 2055-2061.	1.2	1
35	Characterization of thalamo-cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury. Journal of Magnetic Resonance Imaging, 2014, 39, spcone-spcone.	1.9	1
36	Characterization of thalamo-cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury. Journal of Magnetic Resonance Imaging, 2014, 39, 1558-1568.	1.9	72

#	Article	IF	CITATIONS
37	Impaired Cerebrovascular Reactivity in Multiple Sclerosis. JAMA Neurology, 2014, 71, 1275.	4.5	111
38	Imaging the Effects of Oxygen Saturation Changes in Voluntary Apnea and Hyperventilation on Susceptibility-Weighted Imaging. American Journal of Neuroradiology, 2014, 35, 1091-1095.	1.2	15
39	Classification algorithms using multiple MRI features in mild traumatic brain injury. Neurology, 2014, 83, 1235-1240.	1.5	31
40	Concurrent saturation transfer contrast in in vivo brain by a uniform magnetization transfer MRI. NeuroImage, 2014, 95, 22-28.	2.1	24
41	Vesselâ€specific quantification of blood oxygenation with T ₂ â€relaxationâ€underâ€phaseâ€contrast MRI. Magnetic Resonance in Medicine, 2014, 71, 978-989	. ^{1.9}	45
42	MRI Mapping of Cerebrovascular Reactivity via Gas Inhalation Challenges. Journal of Visualized Experiments, 2014, , .	0.2	57
43	Functional Homotopic Changes in Multiple Sclerosis with Resting-State Functional MR Imaging. American Journal of Neuroradiology, 2013, 34, 1180-1187.	1.2	38
44	Mild Traumatic Brain Injury: Longitudinal Regional Brain Volume Changes. Radiology, 2013, 267, 880-890.	3.6	200
45	Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology, 2013, 81, 1966-1966.	1.5	17
46	Ultrahigh-Field MR (7 T) Imaging of Brain Lesions in Neuromyelitis Optica. Multiple Sclerosis International, 2013, 2013, 1-7.	0.4	57
47	Thalamus and Cognitive Impairment in Mild Traumatic Brain Injury: A Diffusional Kurtosis Imaging Study. Journal of Neurotrauma, 2012, 29, 2318-2327.	1.7	223
48	Default-Mode Network Disruption in Mild Traumatic Brain Injury. Radiology, 2012, 265, 882-892.	3.6	246
49	Characterizing Brain Oxygen Metabolism in Patients with Multiple Sclerosis with <i>T2</i> -Relaxation-Under-Spin-Tagging MRI. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 403-412.	2.4	92
50	Brain Iron Quantification in Mild Traumatic Brain Injury: A Magnetic Field Correlation Study. American Journal of Neuroradiology, 2011, 32, 1851-1856.	1.2	79
51	Thalamic Resting-State Functional Networks: Disruption in Patients with Mild Traumatic Brain Injury. Radiology, 2011, 260, 831-840.	3.6	189
52	Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. Journal of Magnetic Resonance Imaging, 2009, 29, 537-544.	1.9	288
53	Diminished visibility of cerebral venous vasculature in multiple sclerosis by susceptibilityâ€weighted imaging at 3.0 Tesla. Journal of Magnetic Resonance Imaging, 2009, 29, 1190-1194.	1.9	108
54	Measurement of deep gray matter perfusion using a segmented true–fast imaging with steadyâ€state precession (Trueâ€FISP) arterial spinâ€labeling (ASL) method at 3T. Journal of Magnetic Resonance Imaging, 2009, 29, 1425-1431.	1.9	14

#	Article	IF	CITATIONS
55	Noninvasive quantification of wholeâ€brain cerebral metabolic rate of oxygen (CMRO ₂) by MRI. Magnetic Resonance in Medicine, 2009, 62, 141-148.	1.9	172
56	Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Injury, 2009, 23, 666-674.	0.6	127
57	Quantitative evaluation of oxygenation in venous vessels using T2â€Relaxationâ€Underâ€Spinâ€Tagging MRI. Magnetic Resonance in Medicine, 2008, 60, 357-363.	1.9	291
58	Baseline blood oxygenation modulates response amplitude: Physiologic basis for intersubject variations in functional MRI signals. Magnetic Resonance in Medicine, 2008, 60, 364-372.	1.9	85
59	Quantitative measurement of spinal cord blood volume in humans using vascular-space-occupancy MRI. NMR in Biomedicine, 2008, 21, 226-232.	1.6	12
60	The Retina as a Window to the Brain—Reply. Archives of Neurology, 2008, 65, 1548.	4.9	0
61	Seven-Tesla Magnetic Resonance Imaging. Archives of Neurology, 2008, 65, 812-6.	4.9	107
62	Quantitative Assessment of Iron Accumulation in the Deep Gray Matter of Multiple Sclerosis by Magnetic Field Correlation Imaging. American Journal of Neuroradiology, 2007, 28, 1639-1644.	1.2	129
63	Seeing Is Believing. Topics in Magnetic Resonance Imaging, 2006, 17, 295-306.	0.7	8
64	Applications of Diffusion Tensor MR Imaging in Multiple Sclerosis. Annals of the New York Academy of Sciences, 2005, 1064, 202-219.	1.8	88
65	Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magnetic Resonance in Medicine, 2005, 54, 1403-1411.	1.9	105
66	Prominent perivenular spaces in multiple sclerosis as a sign of perivascular inflammation in primary demyelination. American Journal of Neuroradiology, 2005, 26, 2316-9.	1.2	39
67	Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. American Journal of Neuroradiology, 2005, 26, 1539-47.	1.2	117
68	Microvascular Abnormality in Relapsing-Remitting Multiple Sclerosis: Perfusion MR Imaging Findings in Normal-appearing White Matter. Radiology, 2004, 231, 645-652.	3.6	216
69	Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging. Journal of Magnetic Resonance Imaging, 2004, 20, 1-7.	1.9	84
70	Indirect evidence for early widespread gray matter involvement in relapsing–remitting multiple sclerosis. NeuroImage, 2004, 21, 1825-1829.	2.1	92
71	Quantitative MRI. Topics in Magnetic Resonance Imaging, 2004, 15, 355-363.	0.7	41
72	Dirty-appearing white matter in multiple sclerosis: volumetric MR imaging and magnetization transfer ratio histogram analysis. American Journal of Neuroradiology, 2003, 24, 1935-40.	1.2	62

#	Article	IF	CITATIONS
73	Whole brain imaging of HIV-infected patients: quantitative analysis of magnetization transfer ratio histogram and fractional brain volume. American Journal of Neuroradiology, 2003, 24, 82-7.	1.2	28
74	Magnetization Transfer Ratio Histogram Analysis of Normal-Appearing Gray Matter and Normal-Appearing White Matter in Multiple Sclerosis. Journal of Computer Assisted Tomography, 2002, 26, 62-68.	0.5	86
75	Correlation between percentage of brain parenchymal volume and neurocognitive performance in HIV-infected patients. American Journal of Neuroradiology, 2002, 23, 543-9.	1.2	40
76	Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. American Journal of Neuroradiology, 2002, 23, 1327-33.	1.2	360
77	Age-related total gray matter and white matter changes in normal adult brain. Part II: quantitative magnetization transfer ratio histogram analysis. American Journal of Neuroradiology, 2002, 23, 1334-41.	1.2	115
78	Multiprotocol MR Image Segmentation in Multiple Sclerosis. Academic Radiology, 2001, 8, 1116-1126.	1.3	29
79	Comparison between EPI and HASTE for ultra-fast MR imaging of the human brain. Neuroradiology, 2001, 43, 1046-1055.	1.1	6
80	Brain Atrophy in Relapsing-Remitting Multiple Sclerosis: Fractional Volumetric Analysis of Gray Matter and White Matter. Radiology, 2001, 220, 606-610.	3.6	97
81	<title>Multiprotocol MR image segmentation in multiple sclerosis: experience with over 1000 studies</title> . , 2000, 3979, 1017.		3
82	Numerical tissue characterization in MS via standardization of the MR image intensity scale. Journal of Magnetic Resonance Imaging, 2000, 12, 715-721.	1.9	38
83	Brain Atrophy in Relapsing-Remitting Multiple Sclerosis and Secondary Progressive Multiple Sclerosis: Longitudinal Quantitative Analysis. Radiology, 2000, 214, 665-670.	3.6	212
84	Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. Journal of Magnetic Resonance Imaging, 1999, 9, 53-60.	1.9	1,067
85	Invited III. New developments: 2. Virtual MR endoscopy in the central nervous system. Journal of Magnetic Resonance Imaging, 1998, 8, 289-296.	1.9	14
86	Virtual MRI endoscopy of the intracranial cerebrospinal fluid spaces. Neuroradiology, 1998, 40, 644-650.	1.1	37
87	Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas American Journal of Roentgenology, 1998, 171, 1479-1486.	1.0	426

Applications of diffusion tensor imaging and fiber tractography. , 0, , 36-37.