
Kondapalli Venkata Gowri Chandra Sek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3506135/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxindole and its derivatives: A review on recent progress in biological activities. Biomedicine and Pharmacotherapy, 2021, 141, 111842.	2.5	131
2	Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorganic Chemistry, 2020, 104, 104269.	2.0	74
3	Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2245-2250.	1.0	58
4	Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Journal of Biomolecular Structure and Dynamics, 2022, 40, 1363-1386.	2.0	58
5	Design, synthesis and evaluation of 6-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl)phenanthridine analogues as antimycobacterial agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6805-6810.	1.0	51
6	Iodobenzene Diacetate Mediated Solid‣tate Synthesis of Heterocyclylâ€1,3,4â€oxadiazoles. Synthetic Communications, 2004, 34, 2153-2157.	1.1	47
7	Medicinal chemistry perspectives of 1,2,3,4-tetrahydroisoquinoline analogs – biological activities and SAR studies. RSC Advances, 2021, 11, 12254-12287.	1.7	41
8	Synthesis of novel ciprofloxacin analogues and evaluation of their anti-proliferative effect on human cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6292-6295.	1.0	39
9	Synthesis and evaluation of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(4-(2-(4-substitutedpiperazin-1-yl)acetyl)piperazin-1-yl)quinoline-3-carbo acid derivatives as anti-tubercular and antibacterial agents. European Journal of Medicinal Chemistry, 2014, 71, 324-332.	oxylic	37
10	Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors. European Journal of Medicinal Chemistry, 2015, 92, 415-426.	2.6	30
11	Design, synthesis and antimycobacterial activity of various 3-(4-(substitutedsulfonyl)piperazin-1-yl)benzo[d]isoxazole derivatives. European Journal of Medicinal Chemistry, 2014, 87, 71-78.	2.6	29
12	Synthesis and evaluation of anti-tubercular activity of 6-(4-substitutedpiperazin-1-yl) phenanthridine analogues. European Journal of Medicinal Chemistry, 2014, 74, 333-339.	2.6	28
13	Design, synthesis and biological evaluation of 2-(3,4-dimethoxyphenyl)-6 (1,2,3,6-tetrahydropyridin-4-yl)imidazo[1,2-a]pyridine analogues as antiproliferative agents. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2551-2558.	1.0	27
14	Discovery of 1,2,3-triazole based quinoxaline-1,4-di-N-oxide derivatives as potential anti-tubercular agents. Bioorganic Chemistry, 2020, 100, 103955.	2.0	26
15	Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents. Medicinal Chemistry Research, 2015, 24, 523-532.	1.1	25
16	Design, synthesis and anti-tumour activity of new pyrimidine-pyrrole appended triazoles. Toxicology in Vitro, 2019, 60, 87-96.	1.1	25
17	Identification and development of pyrazolo[4,3-c]pyridine carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. New Journal of Chemistry, 2017, 41, 347-357.	1.4	23
18	Design, synthesis and biological evaluation of novel 1,2,3-triazole analogues of Imidazo-[1,2-a]-pyridine-3-carboxamide against Mycobacterium tuberculosis. Toxicology in Vitro, 2021, 74, 105137.	1.1	18

Kondapalli Venkata Gowri

#	Article	IF	CITATIONS
19	Design and synthesis of 4-morpholino-6-(1,2,3,6-tetrahydropyridin-4-yl)-N-(3,4,5-trimethoxyphenyl)-1,3,5-triazin-2-amine analogues as tubulin polymerization inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3794-3801.	1.0	17
20	Design, synthesis and biological evaluation of 1,2,3-triazole based 2-aminobenzimidazoles as novel inhibitors of LasR dependent quorum sensing in <i>Pseudomonas aeruginosa</i> . RSC Advances, 2019, 9, 29273-29292.	1.7	17
21	Synthesis, study of antileishmanial and antitrypanosomal activity of imidazo pyridine fused triazole analogues. RSC Advances, 2020, 10, 38328-38343.	1.7	17
22	1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design. Expert Opinion on Drug Discovery, 2021, 16, 1119-1147.	2.5	17
23	Multicomponent cascade reaction: dual role of copper in the synthesis of 1,2,3-triazole tethered benzimidazo[1,2-a]quinoline and their photophysical studies. RSC Advances, 2016, 6, 15884-15894.	1.7	16
24	Inhibitors of pantothenate synthetase of <i>Mycobacterium tuberculosis</i> – a medicinal chemist perspective. RSC Advances, 2020, 10, 37098-37115.	1.7	15
25	Synthesis of 3,5-diarylisoxazoles under solvent-free conditions using iodobenzene diacetate. Chinese Chemical Letters, 2013, 24, 1045-1048.	4.8	14
26	Design and synthesis of 9 <i>H</i> â€fluorenone based 1,2,3â€ŧriazole analogues as <i>Mycobacterium tuberculosis</i> InhA inhibitors. Chemical Biology and Drug Design, 2018, 91, 1078-1086.	1.5	13
27	Recent evolution on synthesis strategies and anti-leishmanial activity of β-carboline derivatives – An update. Heliyon, 2020, 6, e04916.	1.4	13
28	Design, Synthesis and Biological Evaluation of Triazoleâ€Containing 2â€Phenylindole and Salicylic Acid as Quorum Sensing Inhibitors Against <i>Pseudomonas aeruginosa</i> . ChemistrySelect, 2018, 3, 9170-9180.	0.7	12
29	Design, Synthesis, and Biological Evaluation of 2â€(4â€Aminophenyl)benzothiazole Analogues as Antiproliferative Agents. Journal of Heterocyclic Chemistry, 2019, 56, 520-532.	1.4	12
30	Design, synthesis and antimycobacterial evaluation of 1-(4-(2-substitutedthiazol-4-yl)phenethyl)-4-(3-(4-substitutedpiperazin-1-yl)alkyl)piperazine hybrid analogues. European Journal of Medicinal Chemistry, 2014, 84, 605-613.	2.6	11
31	Design, synthesis, and biological evaluation of phenyl thiazole-based AR-V7 degraders. Bioorganic and Medicinal Chemistry Letters, 2022, 55, 128448.	1.0	11
32	Design, synthesis and anti-mycobacterial evaluation of imidazo[1,2- <i>a</i>]pyridine analogues. RSC Medicinal Chemistry, 2022, 13, 327-342.	1.7	11
33	Design, synthesis, and preliminary in vitro and in vivo pharmacological evaluation of 4-{4-[2-(4-(2-substitutedquinoxalin-3-yl)piperazin-1-yl)ethyl]phenyl}thiazoles as atypical antipsychotic agents. Medicinal Chemistry Research, 2013, 22, 1660-1673.	1.1	10
34	Design, Synthesis and Biological Evaluation of New Substituted Sulfonamide Tetrazole Derivatives as Antitubercular Agents. ChemistrySelect, 2016, 1, 1705-1710.	0.7	9
35	Do spiroindolines have the potential to replace vesamicol as lead compound for the development of radioligands targeting the vesicular acetylcholine transporter?. Bioorganic and Medicinal Chemistry, 2017, 25, 5107-5113.	1.4	9
36	Design, synthesis and biological evaluation of 7–(5–((substituted –) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	50 67 Td (ai 2.0	mino)-methyl) 9

anticancer agents. Bioorganic Chemistry, 2021, 112, 104865.

Kondapalli Venkata Gowri

#	Article	IF	CITATIONS
37	Novel phenanthridine amide analogs as potential anti-leishmanial agents: In vitro and in silico insights. Bioorganic Chemistry, 2021, 117, 105414.	2.0	9
38	Recent Update on the Anti-infective Potential of \hat{I}^2 -carboline Analogs. Mini-Reviews in Medicinal Chemistry, 2021, 21, 398-425.	1.1	8
39	Design, synthesis and evaluation of novel β-carboline ester analogues as potential anti-leishmanial agents. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12592-12607.	2.0	8
40	Seeking potent anti-tubercular agents: design and synthesis of substituted- <i>N</i> -(6-(4-(pyrazine-2-carbonyl)piperazine/homopiperazine-1-yl)pyridin-3-yl)benzamide derivatives as anti-tubercular agents. RSC Advances, 2020, 10, 12272-12288.	1.7	7
41	1,8-naphthyridine derivatives: an updated review on recent advancements of their myriad biological activities. Future Medicinal Chemistry, 2021, 13, 1591-1618.	1.1	7
42	Synthesis and preliminary pharmacological evaluation of N-2-(4-(4-(2-substitutedthiazol-4-yl)) Tj ETQqO O O rgBT Chemistry Letters, 2008, 18, 6054-6057.	Overlock 1.0	10 Tf 50 547 6
43	Synthesis and preliminary screening of novel N-{2-[4-(substituted)piperazin-1-yl]-2-oxoethyl}acetamides as potential atypical antipsychotic agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 871-875.	2.5	5
44	Design, synthesis, and preliminary in vitro and in vivo pharmacological evaluation of 2-{4-[4-(2,5-disubstituted thiazol-4-yl)phenylethyl]piperazin-1-yl}-1,8-naphthyridine-3-carbonitriles as atypical antipsychotic agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 561-568.	2.5	5
45	Synthesis and activity of benzopiperidine, benzopyridine and phenyl piperazine based compounds against Leishmania infantum. Experimental Parasitology, 2018, 189, 49-60.	0.5	5
46	Sulfurâ€Assisted Deprotection of Methylene Nitrile Group: Oneâ€Pot Synthesis of 4‣ubstitutedâ€2 H â€1,2,3â€ŧriazoles. ChemistrySelect, 2018, 3, 7565-7571.	0.7	5
47	Anti-proliferative activity, molecular modeling studies and interaction with calf thymus DNA of novel ciprofloxacin analogues. Journal of Chemical Sciences, 2018, 130, 1.	0.7	2
48	Design, synthesis and evaluation of novel phenanthridine triazole analogs as potential antileishmanial agents. Future Medicinal Chemistry, 2022, 14, 867-880.	1.1	2
49	Design, synthesis and structure–activity relationship studies of novel spirochromanone hydrochloride analogs as anticancer agents. Future Medicinal Chemistry, 2022, 14, 325-342.	1.1	1
50	Liquid chromatography-mass spectrometric methods for trace quantification of potential genotoxic impurities in ivacaftor and lumacaftor. Annales Pharmaceutiques Francaises, 2022, 80, 448-459.	0.4	1
51	Discovery of potent antitubercular agents: Design, synthesis and biological evaluation of 4-(3-(4-substitutedpiperazin-1-yl)-quinoxalin-2-yl)-naphthalen-1-ol analogues. Toxicology in Vitro, 2022, 82, 105370.	1.1	1