

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3506100/publications.pdf Version: 2024-02-01

Velu

#	Article	IF	CITATIONS
1	Instantaneous identification of tension in bridge cables using synchrosqueezing wave-packet transform of acceleration responses. Structure and Infrastructure Engineering, 2024, 20, 199-214.	2.0	3
2	Identification of fatigue crack under vibration by nonlinear guided waves. Mechanical Systems and Signal Processing, 2022, 163, 108138.	4.4	21
3	Advanced numerical simulations considering crack orientation for fatigue damage quantification using nonlinear guided waves. Ultrasonics, 2022, 124, 106738.	2.1	13
4	Advances in corrosion monitoring of reinforced concrete using active and passive sensing approaches. , 2022, , 407-429.		0
5	3D reconstruction of concrete defects using optical laser triangulation and modified spacetime analysis. Automation in Construction, 2022, 142, 104469.	4.8	14
6	Imaging-based crack detection on concrete surfaces using You Only Look Once network. Structural Health Monitoring, 2021, 20, 484-499.	4.3	57
7	A simplified analytical model for the investigation of contact acoustic nonlinearity in pipe structures. International Journal of Mechanical Sciences, 2021, 197, 106328.	3.6	6
8	Sensor Networks for Structures Health Monitoring: Placement, Implementations, and Challenges—A Review. Vibration, 2021, 4, 551-584.	0.9	30
9	Mode Selectivity and Frequency Dependence of Guided Waves Generated by Piezoelectric Wafer Transducers in Rebars Embedded in Concrete. Lecture Notes in Mechanical Engineering, 2021, , 687-694.	0.3	0
10	Concrete crack detection with handwriting script interferences using faster regionâ€based convolutional neural network. Computer-Aided Civil and Infrastructure Engineering, 2020, 35, 373-388.	6.3	131
11	Sensitivity of longitudinal guided wave modes to pitting corrosion of rebars embedded in reinforced concrete. Construction and Building Materials, 2020, 239, 117855.	3.2	17
12	Debonding detection in CFRP-reinforced steel structures using anti-symmetrical guided waves. Composite Structures, 2020, 253, 112813.	3.1	29
13	Field test investigations for condition monitoring of a concrete culvert bridge using vibration responses. Structural Control and Health Monitoring, 2020, 27, e2614.	1.9	7
14	Sensor Networks for Structural Health Monitoring. Journal of Sensors, 2020, 2020, 1-2.	0.6	3
15	Nonlinear guided waves for fatigue crack evaluation in steel joints with digital image correlation validation. Smart Materials and Structures, 2020, 29, 035031.	1.8	17
16	Co-Integration-Based Compensation Technique for Dynamic Load Effects on the Electro-mechanical Impedance Method. Journal of Vibration and Acoustics, Transactions of the ASME, 2020, 142, .	1.0	1
17	Guided Wave Based Debonding Detection in CFRP-Reinforced Steel Structures. Smart Innovation, Systems and Technologies, 2020, , 1013-1021.	0.5	0
18	Fatigue crack detection in pipes with multiple mode nonlinear guided waves. Structural Health Monitoring, 2019, 18, 180-192.	4.3	58

Ye Lu

#	Article	IF	CITATIONS
19	Removal of temperature effect in impedance-based damage detection using the cointegration method. Journal of Intelligent Material Systems and Structures, 2019, 30, 2189-2197.	1.4	16
20	Detection of crack development in steel fibre engineered cementitious composite using electrical resistivity tomography. Smart Materials and Structures, 2019, 28, 125011.	1.8	11
21	Nonlinear aspects of "breathing―crack-disturbed plate waves: 3-D analytical modeling with experimental validation. International Journal of Mechanical Sciences, 2019, 159, 140-150.	3.6	38
22	Quantitative fatigue crack evaluation in pipeline structures using nonlinear cylindrical waves. Smart Materials and Structures, 2019, 28, 025015.	1.8	6
23	Identification of incipient pitting corrosion in reinforced concrete structures using guided waves and piezoelectric wafer transducers. Structural Health Monitoring, 2019, 18, 164-171.	4.3	32
24	Detection and assessment of pitting corrosion in rebars using scattering of ultrasonic guided waves. NDT and E International, 2019, 101, 53-61.	1.7	28
25	Development of elasto-magnetic (EM) sensor for monitoring cable tension using an innovative ratio measurement method. Smart Materials and Structures, 2018, 27, 115003.	1.8	9
26	Damage detection in composite structures with high-damping materials using time reversal method. Nondestructive Testing and Evaluation, 2018, 33, 329-345.	1.1	8
27	Structural condition assessment using entropy-based time series analysis. Journal of Intelligent Material Systems and Structures, 2017, 28, 1941-1956.	1.4	9
28	Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance. Ultrasonics, 2017, 77, 152-159.	2.1	16
29	Nonlinear Lamb waves for fatigue damage identification in FRP-reinforced steel plates. Ultrasonics, 2017, 80, 87-95.	2.1	53
30	Guided waves for damage identification in pipeline structures: A review. Structural Control and Health Monitoring, 2017, 24, e2007.	1.9	72
31	Guided waves for debonding identification in CFRP-reinforced concrete beams. Construction and Building Materials, 2017, 131, 388-399.	3.2	42
32	A coupled, non-isothermal gas shale flow model: Application to evaluation of gas-in-place in shale with core samples. Journal of Petroleum Science and Engineering, 2017, 158, 361-379.	2.1	15
33	Nonlinear Lamb wave based DORT method for detection of fatigue cracks. NDT and E International, 2017, 92, 22-29.	1.7	21
34	Mechanical and Electrical Characterisation of Steel Fiber and Carbon Black Engineered Cementitious Composites. Procedia Engineering, 2017, 188, 325-332.	1.2	25
35	Passive detection and localization of fatigue cracking in aluminum plates using Green's function reconstruction from ambient noise. Ultrasonics, 2017, 81, 187-195.	2.1	7
36	A New Method for the Estimation of Lost Gas During the Measurement of the Gas Content of Coal. SPE Reservoir Evaluation and Engineering, 2017, 20, 627-638.	1.1	11

Ye Lu

#	Article	IF	CITATIONS
37	A gradient-based algorithm for trend and outlier prediction in dynamic data streams. , 2017, , .		0
38	Identification of Zero Effect State in Corroded RCC Structures Using Guided Waves and Embedded Piezoelectric Wafer Transducers (PWT). Procedia Engineering, 2017, 188, 209-216.	1.2	8
39	An intelligent data fusion framework for structural health monitoring. , 2016, , .		6
40	Bolted Sleeve Joints for Connecting Pultruded FRP Tubular Components. Journal of Composites for Construction, 2016, 20, .	1.7	45
41	Molecular Dynamics Simulations of Graphene Pull-Out from Calcium Silicate Hydrate. , 2015, , .		2
42	Locating fatigue damage using temporal signal features of nonlinear Lamb waves. Mechanical Systems and Signal Processing, 2015, 60-61, 182-197.	4.4	93
43	Numerical simulation and fatigue life estimation of BGA packages under random vibration loading. Microelectronics Reliability, 2015, 55, 2777-2785.	0.9	36
44	Epoxy Enhanced by Recycled Milled Carbon Fibres in Adhesively-Bonded CFRP for Structural Strengthening. Polymers, 2014, 6, 76-92.	2.0	10
45	Damage detection in rebar-reinforced concrete beams based on time reversal of guided waves. Structural Health Monitoring, 2014, 13, 347-358.	4.3	61
46	Fatigue damage localization using time-domain features extracted from nonlinear Lamb waves. , 2014, ,		1
47	Guided waves for damage detection in rebar-reinforced concrete beams. Construction and Building Materials, 2013, 47, 370-378.	3.2	70
48	Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis. , 2012, , .		1
49	Debonding Detection in Composite Sandwich Structures Based on Guided Waves. AIAA Journal, 2012, 50, 1697-1706.	1.5	52
50	Monitoring of delamination onset and growth during Mode I and Mode II interlaminar fracture tests using guided waves. Composites Science and Technology, 2012, 72, 145-151.	3.8	21
51	A split spectrum processing of noise-contaminated wave signals for damage identification. Smart Structures and Systems, 2012, 10, 253-269.	1.9	3
52	Assessment of debonding in sandwich CF/EP composite beams using A0 Lamb wave at low frequency. Composite Structures, 2011, 93, 483-491.	3.1	81
53	Identification of dual notches based on time-reversal lamb waves and a damage diagnostic imaging algorithm. Journal of Intelligent Material Systems and Structures, 2011, 22, 1983-1992.	1.4	39
54	Damage Identification in Thick Steel Beam Based on Guided Ultrasonic Waves. Journal of Intelligent Material Systems and Structures, 2010, 21, 225-232.	1.4	16

Ye Lu

#	Article	IF	CITATIONS
55	Probabilistic Damage Identification Based on Correlation Analysis Using Guided Wave Signals in Aluminum Plates. Structural Health Monitoring, 2010, 9, 133-144.	4.3	111
56	A damage diagnostic imaging algorithm based on the quantitative comparison of Lamb wave signals. Smart Materials and Structures, 2010, 19, 065008.	1.8	49
57	Conjunctive and compromised data fusion schemes for identification of multiple notches in an aluminium plate using lamb wave signals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 2005-2016.	1.7	16
58	Piezo-activated guided wave propagation and interaction with damage in tubular structures. Smart Structures and Systems, 2010, 6, 835-849.	1.9	7
59	A Probabilistic Diagnostic Algorithm for Identification of Multiple Notches Using Digital Damage Fingerprints (DDFs). Journal of Intelligent Material Systems and Structures, 2009, 20, 1439-1450.	1.4	49
60	Artificial Neural Network (ANN)-based Crack Identification in Aluminum Plates with Lamb Wave Signals. Journal of Intelligent Material Systems and Structures, 2009, 20, 39-49.	1.4	21
61	Probability of the presence of damage estimated from an active sensor network in a composite panel of multiple stiffeners. Composites Science and Technology, 2009, 69, 2054-2063.	3.8	94
62	Time-domain Analyses and Correlations of Lamb Wave Signals for Damage Detection in a Composite Panel of Multiple Stiffeners. Journal of Composite Materials, 2009, 43, 3211-3230.	1.2	29
63	Dispersion analysis of Lamb waves and damage detection for aluminum structures using ridge in the time-scale domain. Measurement Science and Technology, 2009, 20, 095704.	1.4	38
64	Artificial Neural Network (ANN)-based Crack Identification in Aluminum Plates with Lamb Wave Signals. Journal of Intelligent Material Systems and Structures, 2009, 20, 39-49.	1.4	64
65	Quantitative assessment of through-thickness crack size based on Lamb wave scattering in aluminium plates. NDT and E International, 2008, 41, 59-68.	1.7	141
66	Lamb Wave Based Damage Identification in Structures With Complex Geometry. , 2008, , .		0
67	Damage Detection in Thick Steel Beam Using Lamb Waves. , 2008, , .		0
68	Quantitative evaluation of crack orientation in aluminium plates based on Lamb waves. Smart Materials and Structures, 2007, 16, 1907-1914.	1.8	50
69	Crack identification in aluminium plates using Lamb wave signals of a PZT sensor network. Smart Materials and Structures, 2006, 15, 839-849.	1.8	100
70	A quantitative identification approach for delamination in laminated composite beams using digital damage fingerprints (DDFs). Composite Structures, 2006, 75, 559-570.	3.1	28
71	Guided Lamb waves for identification of damage in composite structures: A review. Journal of Sound and Vibration, 2006, 295, 753-780.	2.1	1,218
72	Functionalized composite structures for new generation airframes: a review. Composites Science and Technology, 2005, 65, 1436-1446.	3.8	137

	YE LU	4	
#	Article	IF	CITATIONS
73	Lamb Wave Based Monitoring of Fatigue Crack Growth Using Principal Component Analysis. Key Engineering Materials, 0, 558, 260-267.	0.4	0