List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3506065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends in Pharmacological Sciences, 2008, 29, 186-191.	8.7	256
2	Considerations in the Use of Cerebrospinal Fluid Pharmacokinetics to Predict Brain Target Concentrations in the Clinical Setting. Clinical Pharmacokinetics, 2002, 41, 691-703.	3.5	209
3	Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite α-hydroxymidazolam in healthy volunteers. Clinical Pharmacology and Therapeutics, 1992, 51, 715-728.	4.7	197
4	Mechanism-Based Pharmacokinetic–Pharmacodynamic Modeling—A New Classification of Biomarkers. Pharmaceutical Research, 2005, 22, 1432-1437.	3.5	160
5	Morphine Glucuronidation in Preterm Neonates, Infants and Children Younger than 3 Years. Clinical Pharmacokinetics, 2009, 48, 371-385.	3.5	129
6	Markers of disease severity in chronic obstructive pulmonary disease. Pulmonary Pharmacology and Therapeutics, 2006, 19, 189-199.	2.6	127
7	What is the right dose for children?. British Journal of Clinical Pharmacology, 2010, 70, 597-603.	2.4	120
8	Explaining Variability in Tacrolimus Pharmacokinetics to Optimize Early Exposure in Adult Kidney Transplant Recipients. Therapeutic Drug Monitoring, 2009, 31, 187-197.	2.0	119
9	Body Weight-Dependent Pharmacokinetics of Busulfan in Paediatric Haematopoietic Stem Cell Transplantation Patients. Clinical Pharmacokinetics, 2012, 51, 331-345.	3.5	115
10	Electroencephalogram Effect Measures and Relationships Between Pharmacokinetics and Pharmacodynamics of Centrally Acting Drugs. Clinical Pharmacokinetics, 1992, 23, 191-215.	3.5	112
11	Critical factors of intracerebral microdialysis as a technique to determined the pharmacokinetics of drugs in rat brain. Brain Research, 1994, 666, 1-8.	2.2	106
12	Targeting liposomes with protein drugs to the blood–brain barrier in vitro. European Journal of Pharmaceutical Sciences, 2005, 25, 299-305.	4.0	103
13	Pharmacokinetic-Pharmacodynamic Modeling of the Antinociceptive Effect of Buprenorphine and Fentanyl in Rats: Role of Receptor Equilibration Kinetics. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1136-1149.	2.5	103
14	Physiologically Based Pharmacokinetic Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPS Journal, 2012, 14, 543-553.	4.4	102
15	Systems pharmacology – Towards the modeling of network interactions. European Journal of Pharmaceutical Sciences, 2016, 94, 4-14.	4.0	101
16	Maturation of the Glomerular Filtration Rate in Neonates, as Reflected by Amikacin Clearance. Clinical Pharmacokinetics, 2012, 51, 105-117.	3.5	99
17	Immune Reconstitution Kinetics as an Early Predictor for Mortality using Various Hematopoietic Stem Cell Sources in Children. Biology of Blood and Marrow Transplantation, 2013, 19, 305-313.	2.0	99
18	Drug Disposition in Obesity: Toward Evidence-Based Dosing. Annual Review of Pharmacology and Toxicology, 2015, 55, 149-167.	9.4	99

#	Article	IF	CITATIONS
19	Relevance of the Application of Pharmacokinetic-Pharmacodynamic Modelling Concepts in Drug Development. Clinical Pharmacokinetics, 1997, 32, 259-267.	3.5	93
20	In vivo Target Residence Time and Kinetic Selectivity: The Association Rate Constant as Determinant. Trends in Pharmacological Sciences, 2016, 37, 831-842.	8.7	93
21	Validation of the Transferrin Receptor for Drug Targeting to Brain Capillary Endothelial CellsIn Vitro. Journal of Drug Targeting, 2004, 12, 145-150.	4.4	90
22	Disease System Analysis: Basic Disease Progression Models in Degenerative Disease. Pharmaceutical Research, 2005, 22, 1038-1049.	3.5	88
23	Allometric Scaling of Clearance in Paediatric Patients: When Does the Magic of 0.75 Fade?. Clinical Pharmacokinetics, 2017, 56, 273-285.	3.5	86
24	Pharmacokineticâ€pharmacodynamic modelling of the EEG effects of midazolam in individual rats: influence of rate and route of administration. British Journal of Pharmacology, 1991, 102, 663-668.	5.4	77
25	Developmental Changes in the Expression and Function of Cytochrome P450 3A Isoforms: Evidence from In Vitro and In Vivo Investigations. Clinical Pharmacokinetics, 2013, 52, 333-345.	3.5	74
26	Ribose-Modified Adenosine Analogs as Potential Partial Agonists for the Adenosine Receptor. Journal of Medicinal Chemistry, 1995, 38, 4000-4006.	6.4	73
27	Evidence-Based Morphine Dosing for Postoperative Neonates and Infants. Clinical Pharmacokinetics, 2014, 53, 553-563.	3.5	70
28	Simultaneous Pharmacokinetic Modeling of Gentamicin, Tobramycin and Vancomycin Clearance from Neonates to Adults: Towards a Semi-physiological Function for Maturation in Glomerular Filtration. Pharmaceutical Research, 2014, 31, 2643-2654.	3.5	70
29	Differences in intrinsic efficacy of benzodiazepines are reflected in their concentrationâ€EEG effect relationship. British Journal of Pharmacology, 1992, 105, 164-170.	5.4	69
30	Characterization and Modulation of the Transferrin Receptor on Brain Capillary Endothelial Cells. Pharmaceutical Research, 2004, 21, 761-769.	3.5	68
31	Preclinical Prediction of Human Brain Target Site Concentrations: Considerations in Extrapolating to the Clinical Setting. Journal of Pharmaceutical Sciences, 2011, 100, 3577-3593.	3.3	67
32	A Bodyweight-Dependent Allometric Exponent for Scaling Clearance Across the Human Life-Span. Pharmaceutical Research, 2012, 29, 1570-1581.	3.5	67
33	A Neonatal Amikacin Covariate Model Can Be Used to Predict Ontogeny of Other Drugs Eliminated Through Glomerular Filtration in Neonates. Pharmaceutical Research, 2014, 31, 754-767.	3.5	67
34	Influence of different fat emulsion-based intravenous formulations on the pharmacokinetics and pharmacodynamics of propofol. Pharmaceutical Research, 1998, 15, 442-448.	3.5	66
35	Comparative population pharmacokinetics of lorazepam and midazolam during long-term continuous infusion in critically ill patients. British Journal of Clinical Pharmacology, 2003, 57, 135-145.	2.4	66
36	Allometric relationships between the pharmacokinetics of propofol in rats, children and adults. British Journal of Clinical Pharmacology, 2005, 59, 705-711.	2.4	65

#	Article	IF	CITATIONS
37	Population Pharmacokinetics and Pharmacodynamics of Propofol in Morbidly Obese Patients. Clinical Pharmacokinetics, 2011, 50, 739-750.	3.5	65
38	Mechanism-Based Pharmacokinetic-Pharmacodynamic Modelling of the Reversal of Buprenorphine-Induced Respiratory Depression by Naloxone. Clinical Pharmacokinetics, 2007, 46, 965-980.	3.5	64
39	Pharmacokinetic–Pharmacodynamic Modeling of the Effectiveness and Safety of Buprenorphine and Fentanyl in Rats. Pharmaceutical Research, 2008, 25, 183-193.	3.5	62
40	Prediction of Propofol Clearance in Children from an Allometric Model Developed in Rats, Children and Adults versus a 0.75 Fixed-Exponent Allometric Model. Clinical Pharmacokinetics, 2010, 49, 269-275.	3.5	61
41	Predicting Drug Concentrationâ€Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologicallyâ€Based Pharmacokinetic Model. CPT: Pharmacometrics and Systems Pharmacology, 2017, 6, 765-777.	2.5	61
42	The exploration of rotenone as a toxin for inducing Parkinson's disease in rats, for application in BBB transport and PK–PD experiments. Journal of Pharmacological and Toxicological Methods, 2008, 57, 114-130.	0.7	59
43	A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations. Pharmaceutical Research, 2017, 34, 333-351.	3.5	59
44	Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. European Journal of Pharmaceutical Sciences, 2018, 112, 168-179.	4.0	59
45	Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. British Journal of Pharmacology, 1995, 116, 2538-2544.	5.4	58
46	Tailor-made drug treatment for children. Drug Discovery Today, 2009, 14, 316-320.	6.4	56
47	Systematic Evaluation of the Descriptive and Predictive Performance of Paediatric Morphine Population Models. Pharmaceutical Research, 2011, 28, 797-811.	3.5	56
48	Systemic and Direct Nose-to-Brain Transport Pharmacokinetic Model for Remoxipride after Intravenous and Intranasal Administration. Drug Metabolism and Disposition, 2011, 39, 2275-2282.	3.3	55
49	Synergistic Combinations of Anticonvulsant Agents: What Is the Evidence from Animal Experiments?. Epilepsia, 2007, 48, 412-434.	5.1	53
50	Iontophoretic delivery of apomorphine. II: An in vivo study in patients with Parkinson's disease. Pharmaceutical Research, 1997, 14, 1804-1810.	3.5	52
51	Developmental Changes in Morphine Clearance Across the Entire Paediatric Age Range are Best Described by a Bodyweight-Dependent Exponent Model. Clinical Drug Investigation, 2013, 33, 523-534.	2.2	52
52	Population pharmacokinetic and pharmacodynamic modeling of propofol for long-term sedation in critically ill patients: A comparison between propofol 6% and propofol 1%. Clinical Pharmacology and Therapeutics, 2002, 72, 670-684.	4.7	51
53	Predictive Performance of a Recently Developed Population Pharmacokinetic Model for Morphine and its Metabolites in New Datasets of (Preterm) Neonates, Infants and Children. Clinical Pharmacokinetics, 2011, 50, 51-63.	3.5	51
54	The allometric exponent for scaling clearance varies with age: a study on seven propofol datasets ranging from preterm neonates to adults. British Journal of Clinical Pharmacology, 2014, 77, 149-159.	2.4	50

#	Article	IF	CITATIONS
55	A pharmacodynamic Markov mixed-effect model for the effect of temazepam on sleep. Clinical Pharmacology and Therapeutics, 2000, 68, 175-188.	4.7	49
56	Population pharmacokinetics of lorazepam and midazolam and their metabolites in intensive care patients on continuous venovenous hemofiltration. American Journal of Kidney Diseases, 2005, 45, 360-371.	1.9	49
57	Allometric Scaling of Pharmacodynamic Responses: Application to 5-Ht1A Receptor Mediated Responses from Rat to Man. Pharmaceutical Research, 2007, 24, 2031-2039.	3.5	49
58	Predictive Performance of a Busulfan Pharmacokinetic Model in Children and Young Adults. Therapeutic Drug Monitoring, 2012, 34, 574-583.	2.0	48
59	Prediction of methotrexate CNS distribution in different species – Influence of disease conditions. European Journal of Pharmaceutical Sciences, 2014, 57, 11-24.	4.0	47
60	Pharmacokinetics and hemodynamic effects of nisoldipine and its interaction with cimetidine. Clinical Pharmacology and Therapeutics, 1988, 43, 332-341.	4.7	46
61	Individualized dosing regimens in children based on population PKPD modelling: Are we ready for it?. International Journal of Pharmaceutics, 2011, 415, 9-14.	5.2	46
62	Pharmacokinetics of Ceftazidime in Adult Cystic Fibrosis Patients During Continuous Infusion and Ambulatory Treatment at Home. Therapeutic Drug Monitoring, 1994, 16, 341-348.	2.0	45
63	Iontophoretic delivery of apomorphine. I: In vitro optimization and validation. Pharmaceutical Research, 1997, 14, 1798-1803.	3.5	45
64	Transdermal Iontophoresis of Rotigotine Across Human Stratum Corneum in Vitro: Influence of pH and NaCl Concentration. Pharmaceutical Research, 2004, 21, 844-850.	3.5	43
65	Sensitivity of the individual items of the Hamilton depression rating scale to response and its consequences for the assessment of efficacy. Journal of Psychiatric Research, 2008, 42, 1000-1009.	3.1	43
66	Changes in GABA _A receptor properties in amygdala kindled animals: In vivo studies using [¹¹ C]flumazenil and positron emission tomography. Epilepsia, 2009, 50, 88-98.	5.1	43
67	Critical Illness Is a Major Determinant of Midazolam Clearance in Children Aged 1 Month to 17 Years. Therapeutic Drug Monitoring, 2012, 34, 381-389.	2.0	43
68	Ontogeny of Hepatic Glucuronidation; Methods and Results. Current Drug Metabolism, 2012, 13, 728-743.	1.2	43
69	Influence of feeding schedules on the chronobiology of renin activity, urinary electrolytes and blood pressure in dogs. Chronobiology International, 2014, 31, 715-730.	2.0	43
70	Pharmacokinetic/Pharmacodynamic Modeling of Renin-Angiotensin Aldosterone Biomarkers Following Angiotensin-Converting Enzyme (ACE) Inhibition Therapy with Benazepril in Dogs. Pharmaceutical Research, 2015, 32, 1931-1946.	3.5	43
71	Bone Physiology, Disease and Treatment. Clinical Pharmacokinetics, 2010, 49, 89-118.	3.5	42
72	Population pharmacokinetics of paracetamol across the human ageâ€range from (pre)term neonates, infants, children to adults. Journal of Clinical Pharmacology, 2014, 54, 619-629.	2.0	42

#	Article	IF	CITATIONS
73	Pharmacodynamic characterization of the electroencephalographic effects of thiopental in rats. Journal of Pharmacokinetics and Pharmacodynamics, 1991, 19, 123-143.	0.6	41
74	Pharmacokinetics of Clindamycin in Pregnant Women in the Peripartum Period. Antimicrobial Agents and Chemotherapy, 2010, 54, 2175-2181.	3.2	41
75	A Novel Maturation Function for Clearance of the Cytochrome P450 3A Substrate Midazolam from Preterm Neonates to Adults. Clinical Pharmacokinetics, 2013, 52, 555-565.	3.5	41
76	Stereoselective transport of baclofen across the blood-brain barrier in rats as determined by the unit impulse response methodology. Pharmaceutical Research, 1991, 08, 259-262.	3.5	39
77	Mechanism-Based Pharmacokinetic-Pharmacodynamic Modeling of the Respiratory-Depressant Effect of Buprenorphine and Fentanyl in Rats. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 682-692.	2.5	39
78	Advances in paediatric pharmacokinetics. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 1-8.	3.3	39
79	Paediatric drug development: are population models predictive of pharmacokinetics across paediatric populations?. British Journal of Clinical Pharmacology, 2011, 72, 454-464.	2.4	38
80	Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations. AAPS Journal, 2017, 19, 891-909.	4.4	38
81	Pharmacokinetic-Pharmacodynamic Modeling of Buspirone and Its Metabolite 1-(2-Pyrimidinyl)-piperazine in Rats. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 1130-1137.	2.5	37
82	Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of heptabarbital using aperiodic EEG analysis. Journal of Pharmacokinetics and Pharmacodynamics, 1990, 18, 459-481.	0.6	36
83	A study of the effects of longâ€ŧerm use on individual sensitivity to temazepam and lorazepam in a clinical population. British Journal of Clinical Pharmacology, 1997, 44, 267-275.	2.4	36
84	Mechanism-Based Pharmacokinetic-Pharmacodynamic Modeling of 5-HT1A Receptor Agonists: Estimation of in Vivo Affinity and Intrinsic Efficacy on Body Temperature in Rats. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1012-1020.	2.5	36
85	Pharmacokinetic-Pharmacodynamic Modeling of the Respiratory Depressant Effect of Norbuprenorphine in Rats. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 598-607.	2.5	36
86	Chronobiology of the renin-angiotensin-aldosterone system in dogs: relation to blood pressure and renal physiology. Chronobiology International, 2013, 30, 1144-1159.	2.0	36
87	A Competitive Interaction Model Predicts the Effect of WAY-100,635 on the Time Course of R -(+)-8-Hydroxy-2-(di-n-propylamino)tetralin-Induced Hypothermia. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 330-338.	2.5	35
88	In vitro iontophoresis of R-apomorphine across human stratum corneum. Journal of Controlled Release, 2002, 84, 49-57.	9.9	35
89	Correlation between in vitro and in vivo concentration-effect relationships of naproxen in rats and healthy volunteers. British Journal of Pharmacology, 2006, 148, 396-404.	5.4	35
90	Translation of drug effects from experimental models of neuropathic pain and analgesia to humans. Drug Discovery Today, 2012, 17, 837-849.	6.4	35

#	Article	IF	CITATIONS
91	Developmental pharmacokinetics of propylene glycol in preterm and term neonates. British Journal of Clinical Pharmacology, 2013, 75, 162-171.	2.4	35
92	Pharmacokinetic-Pharmacodynamic Modelling of the Interaction between Flumazenil and Midazolam in Volunteers by Aperiodic EEG Analysis. Clinical Pharmacokinetics, 1991, 20, 497-508.	3.5	34
93	Stability and pharmacokinetics of flumazenil in the rat. Psychopharmacology, 1991, 103, 384-387.	3.1	34
94	8-substituted adenosine and theophylline-7-riboside analogues as potential partial agonists for the adenosine A1 receptor. European Journal of Pharmacology, 1995, 290, 189-199.	2.6	34
95	Multivariate Quantitative Structure–Pharmacokinetic Relationships (QSPKR) Analysis of Adenosine A1 Receptor Agonists in rat. Journal of Pharmaceutical Sciences, 1999, 88, 306-312.	3.3	34
96	High-performance liquid chromatography of nalbuphine, butorphanol and morphine in blood and brain microdialysate samples: Application to pharmacokinetic/pharmacodynamic studies in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 822, 230-237.	2.3	34
97	Animal-to-Human Extrapolation of the Pharmacokinetic and Pharmacodynamic Properties of Buprenorphine. Clinical Pharmacokinetics, 2007, 46, 433-447.	3.5	34
98	Structural Models Describing Placebo Treatment Effects in Schizophrenia and Other Neuropsychiatric Disorders. Clinical Pharmacokinetics, 2011, 50, 429-450.	3.5	34
99	The unit impulse response procedure for the pharmacokinetic evaluation of drug entry into the central nervous system. Journal of Pharmacokinetics and Pharmacodynamics, 1989, 17, 441-462.	0.6	33
100	Partial agonism of theophylline-7-riboside on adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 350, 638-645.	3.0	33
101	Transdermal iontophoresis of the dopamine agonist 5-OH-DPAT in human skin in vitro. Journal of Controlled Release, 2005, 103, 393-403.	9.9	33
102	Predicting the "First dose in children―of CYP3Aâ€metabolized drugs: Evaluation of scaling approaches and insights into the CYP3A7â€CYP3A4 switch at young ages. Journal of Clinical Pharmacology, 2014, 54, 1006-1015.	2.0	32
103	Transdermal iontophoresis of rotigotine: influence of concentration, temperature and current density in human skin in vitro. Journal of Controlled Release, 2004, 96, 159-167.	9.9	31
104	Population pharmacodynamic modelling of lorazepam- and midazolam-induced sedation upon long-term continuous infusion in critically ill patients. European Journal of Clinical Pharmacology, 2006, 62, 185-194.	1.9	31
105	Towards a European Strategy for Medicines Research (2014–2020): The EUFEPS Position Paper on Horizon 2020. European Journal of Pharmaceutical Sciences, 2012, 47, 979-987.	4.0	31
106	A population analysis of the pharmacokinetics and pharmacodynamics of midazolam in the rat. Journal of Pharmacokinetics and Pharmacodynamics, 1991, 19, 485-496.	0.6	30
107	The use of intracerebral microdialysis to determine changes in blood-brain barrier transport characteristics. Pharmaceutical Research, 1995, 12, 129-133.	3.5	30
108	Pharmacokinetic-Pharmacodynamic Modeling of the D2 and 5-HT2A Receptor Occupancy of Risperidone and Paliperidone in Rats. Pharmaceutical Research, 2012, 29, 1932-1948.	3.5	30

#	Article	IF	CITATIONS
109	Identifying the translational gap in the evaluation of drugâ€induced <scp>QT_c</scp> interval prolongation. British Journal of Clinical Pharmacology, 2013, 76, 708-724.	2.4	30
110	Developmental changes rather than repeated administration drive paracetamol glucuronidation in neonates and infants. European Journal of Clinical Pharmacology, 2015, 71, 1075-1082.	1.9	30
111	Pooled population pharmacokinetic model of imipenem in plasma and the lung epithelial lining fluid. British Journal of Clinical Pharmacology, 2016, 81, 1113-1123.	2.4	30
112	Application of a combined "effect compartment/indirect response model" to the central nervous system effects of tiagabine in the rat. Journal of Pharmacokinetics and Pharmacodynamics, 1999, 27, 301-323.	0.6	29
113	Functional role of adenosine receptor subtypes in the regulation of blood–brain barrier permeability: possible implications for the design of synthetic adenosine derivatives. European Journal of Pharmaceutical Sciences, 2003, 19, 13-22.	4.0	29
114	Explaining variability in ciclosporin exposure in adult kidney transplant recipients. European Journal of Clinical Pharmacology, 2010, 66, 579-590.	1.9	29
115	Pharmacokinetic modeling of the anticonvulsant response of oxazepam in rats using the pentylenetetrazol threshold concentration as pharmacodynamic measure. Journal of Pharmacokinetics and Pharmacodynamics, 1988, 16, 203-228.	0.6	28
116	Pharmacokinetics and EEG Effects of Flumazenil in Volunteers. Clinical Pharmacokinetics, 1991, 20, 491-496.	3.5	28
117	Pharmacokinetics, induction of anaesthesia and safety characteristics of Propofol 6% SAZN vs Propofol 1% SAZN and Diprivan® -10 after bolus injection. British Journal of Clinical Pharmacology, 1999, 47, 653-660.	2.4	28
118	Pharmacokinetics and effects of propofol 6% for short-term sedation in paediatric patients following cardiac surgery. British Journal of Clinical Pharmacology, 2002, 54, 415-422.	2.4	28
119	Pharmacokinetic/pharmacodynamic modelling of the EEG effects of opioids: The role of complex biophase distribution kinetics. European Journal of Pharmaceutical Sciences, 2008, 34, 149-163.	4.0	28
120	Effect of Age-Related Factors on the Pharmacokinetics of Lamotrigine and Potential Implications for Maintenance Dose Optimisation in Future Clinical Trials. Clinical Pharmacokinetics, 2018, 57, 1039-1053.	3.5	28
121	Mechanistic models enable the rational use of <i>in vitro</i> drug-target binding kinetics for better drug effects in patients. Expert Opinion on Drug Discovery, 2016, 11, 45-63.	5.0	27
122	A System Approach to Pharmacodynamics. Ill: An Algorithm and Computer Program, COLAPS, for Pharmacodynamic Modeling. Journal of Pharmaceutical Sciences, 1991, 80, 488-495.	3.3	26
123	Pharmacokinetic Modeling of Non-Linear Brain Distribution of Fluvoxamine in the Rat. Pharmaceutical Research, 2008, 25, 792-804.	3.5	25
124	A New Minimal-Stress Freely-Moving Rat Model for Preclinical Studies on Intranasal Administration of CNS Drugs. Pharmaceutical Research, 2009, 26, 1911-1917.	3.5	25
125	Modelling and Simulation of the Positive and Negative Syndrome Scale (PANSS) Time Course and Dropout Hazard in Placebo Arms of Schizophrenia Clinical Trials. Clinical Pharmacokinetics, 2012, 51, 261-275.	3.5	25
126	Pharmacokinetic interactions and dosing rationale for antiepileptic drugs in adults and children. British Journal of Clinical Pharmacology, 2018, 84, 97-111.	2.4	25

#	Article	IF	CITATIONS
127	Pharmacokinetic-pharmacodynamic analysis of the EEG effect of alfentanil in rats following beta-funaltrexamine-induced mu-opioid receptor "knockdown" in vivo. Pharmaceutical Research, 2000, 17, 653-659.	3.5	24
128	Therapeutic efficacy of the adenosine A 1 receptor agonist N 6 -cyclopentyladenosine (CPA) against organophosphate intoxication. Archives of Toxicology, 2002, 76, 650-656.	4.2	24
129	Adenosine A1Receptor AgonistN6-Cyclopentyladenosine Affects the Inactivation of Acetylcholinesterase in Blood and Brain by Sarin. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1307-1313.	2.5	24
130	Pilot study on the influence of liver blood flow and cardiac output on the clearance of propofol in critically ill patients. European Journal of Clinical Pharmacology, 2008, 64, 329-334.	1.9	24
131	Differences in the sensitivity of behavioural measures of pain to the selectivity of cycloâ€oxygenase inhibitors. European Journal of Pain, 2009, 13, 448-457.	2.8	24
132	Pharmacokinetics of Penicillin G in Infants with a Gestational Age of Less than 32 Weeks. Antimicrobial Agents and Chemotherapy, 2007, 51, 3720-3725.	3.2	23
133	The influence of labour on the pharmacokinetics of intravenously administered amoxicillin in pregnant women. British Journal of Clinical Pharmacology, 2008, 66, 866-874.	2.4	23
134	Pharmacology-based toxicity assessment: towards quantitative risk prediction in humans. Mutagenesis, 2016, 31, 359-374.	2.6	23
135	The influence of dosage time of midazolam on its pharmacokinetics and effects in humans. Clinical Pharmacology and Therapeutics, 1991, 50, 16-24.	4.7	22
136	Brain penetration of synthetic adenosine A1 receptor agonists in situ: role of the rENT1 nucleoside transporter and binding to blood constituents. European Journal of Pharmaceutical Sciences, 2005, 24, 59-66.	4.0	22
137	A Semiphysiological Population Model for Prediction of the Pharmacokinetics of Drugs under Liver and Renal Disease Conditions. Drug Metabolism and Disposition, 2011, 39, 1278-1287.	3.3	22
138	Compartmental Modeling of Transdermal Iontophoretic Transport: I. In Vitro Model Derivation and Application. Pharmaceutical Research, 2004, 21, 1974-1984.	3.5	21
139	Compartmental Modeling of Transdermal Iontophoretic Transport II: In Vivo Model Derivation and Application. Pharmaceutical Research, 2005, 22, 335-346.	3.5	21
140	Sensitivity of the Montgomery Asberg Depression Rating Scale to response and its consequences for the assessment of efficacy. Journal of Psychiatric Research, 2009, 43, 1049-1056.	3.1	21
141	Pharmacokinetic–pharmacodynamic modeling of antipsychotic drugs in patients with schizophrenia Part I: The use of PANSS total score and clinical utility. Schizophrenia Research, 2013, 146, 144-152.	2.0	21
142	The future of drug development: the paradigm shift towards systems therapeutics. Drug Discovery Today, 2018, 23, 1990-1995.	6.4	21
143	Estimation of amobarbital plasma-effect site equilibration kinetics. Relevance of polyexponential conductance functions. Journal of Pharmacokinetics and Pharmacodynamics, 1991, 19, 617-634.	0.6	20
144	Pharmacokinetic–pharmacodynamic correlation of lamotrigine, flunarizine, loreclezole, CGP40116 and CGP39551 in the cortical stimulation model. Epilepsy Research, 2000, 40, 41-52.	1.6	20

#	Article	IF	CITATIONS
145	Lontophoretic delivery of apomorphine in vitro: physicochemic considerations. Pharmaceutical Research, 2001, 18, 1509-1513.	3.5	20
146	Pharmacometrics as a Discipline Is Entering the "Industrialization―Phase: Standards, Automation, Knowledge Sharing, and Training Are Critical for Future Success. Journal of Clinical Pharmacology, 2010, 50, 9S-19S.	2.0	20
147	Pharmacodynamic Analysis of the Anticonvulsant Effects of Tiagabine and Lamotrigine in Combination in the Rat. Epilepsia, 2004, 45, 424-435.	5.1	19
148	Mechanism-Based Pharmacokinetic–Pharmacodynamic Modeling of the Dopamine D2 Receptor Occupancy of Olanzapine in Rats. Pharmaceutical Research, 2011, 28, 2490-2504.	3.5	19
149	Scaling of pharmacokinetics across paediatric populations: the lack of interpolative power of allometric models. British Journal of Clinical Pharmacology, 2012, 74, 525-535.	2.4	19
150	Drugs Being Eliminated via the Same Pathway Will Not Always Require Similar Pediatric Dose Adjustments. CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 175-185.	2.5	19
151	Coupling of Metal Containing Homing Devices to Liposomes via a Maleimide Linker: Use of TCEP to Stabilize Thiol-groups without Scavenging Metals. Journal of Drug Targeting, 2004, 12, 569-573.	4.4	18
152	Pharmacokinetics of Amoxicillin in Maternal, Umbilical Cord, and Neonatal Sera. Antimicrobial Agents and Chemotherapy, 2009, 53, 1574-1580.	3.2	18
153	Sacubitril/valsartan (LCZ696) significantly reduces aldosterone and increases cGMP circulating levels in a canine model of RAAS activation. European Journal of Pharmaceutical Sciences, 2019, 128, 103-111.	4.0	18
154	Online solid phase extraction with liquid chromatography–tandem mass spectrometry to analyze remoxipride in small plasma-, brain homogenate-, and brain microdialysate samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 969-975.	2.3	17
155	Pharmacokinetic–Pharmacodynamic Analysis of the Static Allodynia Response to Pregabalin and Sildenafil in a Rat Model of Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 599-608.	2.5	17
156	Prediction of Morphine Clearance in the Paediatric Population. Clinical Pharmacokinetics, 2012, 51, 695-709.	3.5	17
157	Covariate effects and population pharmacokinetics of lamivudine in <scp>HIV</scp> â€infected children. British Journal of Clinical Pharmacology, 2014, 77, 861-872.	2.4	17
158	Individualized Dosing Algorithms and Therapeutic Monitoring for Antiepileptic Drugs. Clinical Pharmacology and Therapeutics, 2018, 103, 663-673.	4.7	17
159	Radioimmunoassay of desglycinamide-arginine vasopressin and its application in a pharmacokinetic study in the rat. Peptides, 1988, 9, 555-559.	2.4	16
160	Pharmacokinetic-pharmacodynamic modelling of the EEG effect of alfentanil in rats. Journal of Pharmacological and Toxicological Methods, 1997, 38, 99-108.	0.7	16
161	Physiological indirect effect modeling of the antilipolytic effects of adenosine A1-receptor agonists. Journal of Pharmacokinetics and Pharmacodynamics, 1997, 25, 673-694.	0.6	16
162	Adaptive trials in paediatric development: dealing with heterogeneity and uncertainty in pharmacokinetic differences in children. British Journal of Clinical Pharmacology, 2012, 74, 346-353.	2.4	16

#	Article	IF	CITATIONS
163	Low but Inducible Contribution of Renal Elimination to Clearance of Propylene Glycol in Preterm and Term Neonates. Therapeutic Drug Monitoring, 2014, 36, 278-287.	2.0	16
164	Effect of elastic liquid-state vesicle on apomorphine iontophoresis transport through human skin in vitro. Pharmaceutical Research, 2001, 18, 1627-1630.	3.5	15
165	Correlation between midazolam and lignocaine pharmacokinetics and MECX formation in healthy volunteers. British Journal of Clinical Pharmacology, 2002, 53, 133-139.	2.4	15
166	Pharmacokinetics and Pharmacodynamics Analysis of Transdermal Iontophoresis of 5-OH-DPAT in Rats: In vitro–in vivo Correlation. Journal of Pharmaceutical Sciences, 2006, 95, 1570-1585.	3.3	15
167	Population Pharmacokinetic-Pharmacodynamic Modeling of Haloperidol in Patients With Schizophrenia Using Positive and Negative Syndrome Rating Scale. Journal of Clinical Psychopharmacology, 2013, 33, 731-739.	1.4	15
168	Population pharmacokinetics of deferiprone in healthy subjects. British Journal of Clinical Pharmacology, 2014, 78, 1397-1406.	2.4	15
169	Pretreatment with a water-based surfactant formulation affects transdermal iontophoretic delivery of R-apomorphine in vitro. Pharmaceutical Research, 2003, 20, 653-659.	3.5	14
170	Blood–brain barrier transport of synthetic adenosine A1 receptor agonists in vitro: structure transport relationships. European Journal of Pharmaceutical Sciences, 2003, 20, 347-356.	4.0	14
171	Pharmacodynamic Analysis of the Interaction between Tiagabine and Midazolam with an Allosteric Model That Incorporates Signal Transduction. Epilepsia, 2003, 44, 329-338.	5.1	14
172	The missing link between clinical endpoints and drug targets in depression. Trends in Pharmacological Sciences, 2010, 31, 144-152.	8.7	14
173	Integration of PKPD relationships into benefit–risk analysis. British Journal of Clinical Pharmacology, 2015, 80, 979-991.	2.4	14
174	Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy. Pharmaceutical Research, 2016, 33, 1003-1017.	3.5	14
175	<i>In vitro</i> and <i>in silico</i> analysis of the effects of <scp>D</scp> ₂ receptor antagonist target binding kinetics on the cellular response to fluctuating dopamine concentrations. British Journal of Pharmacology, 2018, 175, 4121-4136.	5.4	14
176	Phannacokineticâ€pharmacodynamic modelling of the anticonvulsant effect of oxazepam in individual rats. British Journal of Pharmacology, 1990, 99, 53-58.	5.4	13
177	Pharmacodynamic interaction between midazolam and a low dose of ethanol in vivo. Life Sciences, 1995, 57, 325-333.	4.3	13
178	Pharmacodynamics of temazepam in primary insomnia: Assessment of the value of quantitative electroencephalography and saccadic eye movements in predicting improvement of sleep. Clinical Pharmacology and Therapeutics, 1997, 62, 444-452.	4.7	13
179	Population Pharmacokinetic Model of the Pregabalin-Sildenafil Interaction in Rats: Application of Simulation to Preclinical PK-PD Study Design. Pharmaceutical Research, 2009, 26, 2259-2269.	3.5	13
180	Population pharmacokinetics of abacavir in infants, toddlers and children. British Journal of Clinical Pharmacology, 2013, 75, 1525-1535.	2.4	13

#	Article	IF	CITATIONS
181	Notâ€inâ€ŧrial simulation I: Bridging cardiovascular risk from clinical trials to realâ€life conditions. British Journal of Clinical Pharmacology, 2013, 76, 964-972.	2.4	13
182	Kinetics of Drug Action in Disease States XII: Effect of Experimental Liver Diseases on the Pharmacodynamics of Phenobarbital and Ethanol in Rats. Journal of Pharmaceutical Sciences, 1985, 74, 321-324.	3.3	12
183	Mechanism-based modeling of functional adaptation upon chronic treatment with midazolam. Pharmaceutical Research, 2000, 17, 321-327.	3.5	12
184	Iontophoretic R-apomorphine delivery in combination with surfactant pretreatment: in vitro validation studies. International Journal of Pharmaceutics, 2003, 266, 61-68.	5.2	12
185	Population pharmacokinetic model of fluvoxamine in rats: Utility for application in animal behavioral studies. European Journal of Pharmaceutical Sciences, 2007, 30, 45-55.	4.0	12
186	Prediction of antiepileptic drug efficacy: the use of intracerebral microdialysis to monitor biophase concentrations. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 1267-1277.	3.3	12
187	Structure-Based Prediction of Anti-infective Drug Concentrations in the Human Lung Epithelial Lining Fluid. Pharmaceutical Research, 2016, 33, 856-867.	3.5	12
188	Pharmacokinetic–pharmacodynamic modelling of behavioural responses. Neuroscience and Biobehavioral Reviews, 1998, 23, 229-236.	6.1	11
189	A combined specific target site binding and pharmacokinetic model to explore the non-linear disposition of draflazine. Journal of Pharmacokinetics and Pharmacodynamics, 1999, 27, 257-281.	0.6	11
190	Evaluation of treatment response in depression studies using a Bayesian parametric cure rate model. Journal of Psychiatric Research, 2008, 42, 1189-1197.	3.1	11
191	Translational Pharmacokinetic Modeling of Fingolimod (FTY720) as a Paradigm Compound Subject to Sphingosine Kinase-Mediated Phosphorylation. Drug Metabolism and Disposition, 2014, 42, 1367-1378.	3.3	11
192	Dopamine D2 Receptor Occupancy as a Predictor of Catalepsy in Rats: A Pharmacokinetic-Pharmacodynamic Modeling Approach. Pharmaceutical Research, 2014, 31, 2605-2617.	3.5	11
193	Sensitivity of pharmacokinetic–pharmacodynamic analysis for detecting small magnitudes of QTc prolongation in preclinical safety testing. Journal of Pharmacological and Toxicological Methods, 2015, 72, 1-10.	0.7	11
194	Application of a systems pharmacology model for translational prediction of hERG â€mediated QT c prolongation. Pharmacology Research and Perspectives, 2016, 4, e00270.	2.4	11
195	Exploring genetic and nonâ€genetic risk factors for delayed graft function, acute and subclinical rejection in renal transplant recipients. British Journal of Clinical Pharmacology, 2016, 82, 227-237.	2.4	11
196	Pharmacodynamics of the anticonvulsant effect of oxazepam in aging BN/BiRij rats. British Journal of Pharmacology, 1992, 107, 165-170.	5.4	10
197	Pharmacokineticâ€EEG effect relationship of midazolam in aging BN/BiRij rats. British Journal of Pharmacology, 1992, 107, 171-177.	5.4	10
198	A model-based approach to treatment comparison in acute migraine. British Journal of Clinical Pharmacology, 2006, 62, 591-600.	2.4	10

#	Article	IF	CITATIONS
199	Analysis of responses in migraine modelling using hidden Markov models. Statistics in Medicine, 2007, 26, 4163-4178.	1.6	10
200	Mechanistic model for the acute effect of fluvoxamine on 5-HT and 5-HIAA concentrations in rat frontal cortex. European Journal of Pharmaceutical Sciences, 2008, 33, 217-229.	4.0	10
201	Evaluation of the Impact of UGT Polymorphism on the Pharmacokinetics and Pharmacodynamics of the Novel PPAR Agonist Sipoglitazar. Journal of Clinical Pharmacology, 2013, 53, 256-263.	2.0	10
202	Influence of covariate distribution on the predictive performance of pharmacokinetic models in paediatric research. British Journal of Clinical Pharmacology, 2014, 78, 145-157.	2.4	10
203	Sampling Optimization in Pharmacokinetic Bridging Studies: Example of the Use of Deferiprone in Children With β â€Thalassemia. Journal of Clinical Pharmacology, 2016, 56, 1094-1103.	2.0	10
204	Pharmacotherapy in pediatric epilepsy: from trial and error to rational drug and dose selection – a long way to go. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 1143-1156.	3.3	10
205	Extending a Systems Model of the APP Pathway: Separation of β- and γ-Secretase Sequential Cleavage Steps of APP. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 507-518.	2.5	10
206	Variability in the Pharmacokinetics of Nisoldipine as Caused by Differences in Liver Blood Flow Response. Journal of Clinical Pharmacology, 1989, 29, 714-721.	2.0	9
207	Modelâ€based evaluation of drugâ€induced <scp>QT</scp> c prolongation for compounds in early development. British Journal of Clinical Pharmacology, 2015, 79, 148-161.	2.4	9
208	Systems Pharmacology Analysis of the Amyloid Cascade after Â-Secretase Inhibition Enables the Identification of an AA42 Oligomer Pool. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 205-216.	2.5	9
209	Mechanism-based modeling of adaptive changes in the pharmacodynamics of midazolam in the kindling model of epilepsy. Pharmaceutical Research, 1999, 16, 1702-1709.	3.5	8
210	Enantioselective high-performance liquid chromatographic analysis of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin. Biomedical Applications, 2000, 738, 67-73.	1.7	8
211	Model-based analysis of thromboxane B2 and prostaglandin E2 as biomarkers in the safety evaluation of naproxen. Toxicology and Applied Pharmacology, 2014, 278, 209-219.	2.8	8
212	Evaluation of the Long-Term Durability and Glycemic Control of Fasting Plasma Glucose and Glycosylated Hemoglobin for Pioglitazone in Japanese Patients with Type 2 Diabetes. Diabetes Technology and Therapeutics, 2015, 17, 215-223.	4.4	8
213	Biophase Equilibration Times. Journal of Pharmaceutical Sciences, 1991, 80, 881-886.	3.3	7
214	Modelâ€based prediction of the acute and longâ€ŧerm safety profile of naproxen in rats. British Journal of Pharmacology, 2015, 172, 3861-3874.	5.4	7
215	Model-Based Optimisation of Deferoxamine Chelation Therapy. Pharmaceutical Research, 2016, 33, 498-509.	3.5	7
216	Characterization and Prediction of Cardiovascular Effects of Fingolimod and Siponimod Using a Systems Pharmacology Modeling Approach. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 356-367.	2.5	7

#	Article	IF	CITATIONS
217	Relationship between receptor occupancy at 37 degrees C and the anticonvulsant effect of flunitrazepam in rats. Pharmaceutical Research, 1989, 06, 585-591.	3.5	6
218	Pharmacodynamics of Tolerance Development to the Anesthetic and Anticonvulsant Effects of Phenobarbital in Rats. Journal of Pharmaceutical Sciences, 1990, 79, 207-211.	3.3	6
219	Low efficacy adenosine A1 agonists inhibit striatal acetylcholine release in rats improving central selectivity of action. Neuroscience Letters, 2003, 343, 57-61.	2.1	6
220	Relevance of Absorption Rate and Lag Time to??the Onset of Action in Migraine. Clinical Pharmacokinetics, 2008, 47, 139-146.	3.5	6
221	Mechanism-Based Pharmacodynamic Modeling of S(–)-Atenolol: Estimation of in Vivo Affinity for the β1-Adrenoceptor with an Agonist-Antagonist Interaction Model. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 1234-1242.	2.5	6
222	Mechanistic studies of the transdermal iontophoretic delivery of 5-OH-DPAT in vitro. Journal of Pharmaceutical Sciences, 2010, 99, 275-285.	3.3	6
223	Sensitivity of individual items of the Positive and Negative Syndrome Scale (PANSS) and items subgroups to differentiate between placebo and drug treatment in schizophrenia. Schizophrenia Research, 2013, 146, 53-58.	2.0	6
224	A modelâ€based approach for the evaluation of once daily dosing of lamivudine in <scp>HIV</scp> â€infected children. British Journal of Clinical Pharmacology, 2014, 77, 852-860.	2.4	6
225	A model-based approach to analyze the influence of UGT2B15 polymorphism driven pharmacokinetic differences on the pharmacodynamic response of the PPAR agonist sipoglitazar. Journal of Clinical Pharmacology, 2014, 54, 453-461.	2.0	6
226	Biomarker exposure–response relationships as the basis for rational dose selection: Lessons from a simulation exercise using a selective COXâ€2 inhibitor. Journal of Clinical Pharmacology, 2016, 56, 609-621.	2.0	6
227	Translating QT interval prolongation from conscious dogs to humans. British Journal of Clinical Pharmacology, 2017, 83, 349-362.	2.4	6
228	Influence of Chlorthalidone on the Pharmacokinetics and Pharmacodynamics of Org 10172 (Lomoparan®), A Low Molecular Weight Heparinoid, in Healthy Volunteers. Journal of Clinical Pharmacology, 1991, 31, 611-617.	2.0	5
229	Characterization of the pharmacokinetics, brain distribution, and therapeutic efficacy of the adenosine A1 receptor partial agonist 2′-deoxy-N6-cyclopentyladenosine in sarin-poisoned rats. Toxicology and Applied Pharmacology, 2003, 192, 86-94.	2.8	5
230	Pharmacokinetic–pharmacodynamic modeling of the effect of fluvoxamine on p-chloroamphetamine-induced behavior. European Journal of Pharmaceutical Sciences, 2007, 32, 200-208.	4.0	5
231	Reproducible and time-dependent modification of serum protein binding in Wistar Kyoto rats. Journal of Pharmacological and Toxicological Methods, 2007, 56, 72-78.	0.7	5
232	Application of the Convection–Dispersion Equation to Modelling Oral Drug Absorption. Bulletin of Mathematical Biology, 2007, 69, 181-195.	1.9	5
233	The Pharmacokinetics and Pharmacological Effect of (S)-5-OH-DPAT Following Controlled Delivery with Transdermal Iontophoresis. Journal of Pharmaceutical Sciences, 2011, 100, 2996-3009.	3.3	5
234	Determination of Dexmedetomidine in Rat Plasma by a Sensitive [3H]Clonidine Radioreceptor Assay. Journal of Pharmaceutical Sciences, 1997, 86, 822-826.	3.3	4

#	Article	IF	CITATIONS
235	Pharmacokinetic-pharmacodynamic Modelling of the Analgesic Effect of Alfentanil in the Rat Using Tooth Pulp Evoked Potentials. Journal of Pharmacological and Toxicological Methods, 1998, 39, 19-27.	0.7	4
236	Decreased Efficacy of GABAA-receptor Modulation by Midazolam in the Kainate Model of Temporal Lobe Epilepsy. Epilepsia, 2007, 48, 1378-1387.	5.1	4
237	Impact of disease, drug and patient adherence on the effectiveness of antiviral therapy in pediatric HIV. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 497-511.	3.3	4
238	The variability in betaâ€cell function in placeboâ€treated subjects with type 2 diabetes: application of the weightâ€HbA1câ€insulinâ€glucose (WHIG) model. British Journal of Clinical Pharmacology, 2017, 83, 487-497.	2.4	3
239	Modeling of prolactin response following dopamine D ₂ receptor antagonists in rats: can it be translated to clinical dosing?. Pharmacology Research and Perspectives, 2017, 5, e00364.	2.4	3
240	Increased sensitivity to the anticonvulsant effect of valproate in aging BN/BiRij rats. Pharmaceutical Research, 1993, 10, 1046-1051.	3.5	2
241	Assessment of the enantiomeric purity of R- and S-N6-phenylisopropyladenosine (PIA): Implications for adenosine receptor subclassification. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 350, 109-112.	3.0	1
242	Summary data of potency and parameter information from semi-mechanistic PKPD modeling of prolactin release following administration of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride in rats. Data in Brief, 2016, 8, 1433-1437.	1.0	1
243	Characterizing QT interval prolongation in early clinical development: a case study with methadone. Pharmacology Research and Perspectives, 2017, 5, e00284.	2.4	1
244	Age and the pharmacokinetic-pharmacodynamic relationship of phenobarbital in rats: "pseudo"-longitudinal vs cross-sectional study design. Pharmaceutical Research, 1992, 09, 1456-1459.	3.5	0
245	Mechanism-based modelling of CNS drug effect: from receptor pharmacology to clinical trial. International Congress Series, 2001, 1220, 79-87.	0.2	0
246	Authors' Reply to Standing et al.: "Effect of Age-Related Factors on the Pharmacokinetics of Lamotrigine and Potential Implications for Maintenance Dose Optimisation in Future Clinical Trials― Clinical Pharmacokinetics, 2018, 57, 1473-1475.	3.5	0