Daniel Garcia-Vallejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3505863/publications.pdf

Version: 2024-02-01

566801 454577 43 961 15 30 citations g-index h-index papers 46 46 46 589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation. Nonlinear Dynamics, 2004, 35, 313-329.	2.7	118
2	Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation. Nonlinear Dynamics, 2006, 43, 239-256.	2.7	105
3	A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dynamics, 2007, 50, 249-264.	2.7	90
4	An Internal Damping Model for the Absolute Nodal Coordinate Formulation. Nonlinear Dynamics, 2005, 42, 347-369.	2.7	82
5	Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates. Nonlinear Dynamics, 2003, 34, 75-94.	2.7	76
6	Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody System Dynamics, 2008, 20, 1-28.	1.7	60
7	Study of the Geometric Stiffening Effect: Comparison of Different Formulations. Multibody System Dynamics, 2004, 11, 321-341.	1.7	53
8	Dynamic modeling of a radially multilayered tether cable for a remotely-operated underwater vehicle (ROV) based on the absolute nodal coordinate formulation (ANCF). Mechanism and Machine Theory, 2020, 153, 103961.	2.7	42
9	Direct sensitivity analysis of multibody systems with holonomic and nonholonomic constraints via an index-3 augmented Lagrangian formulation with projections. Nonlinear Dynamics, 2018, 93, 2039-2056.	2.7	29
10	Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems. Nonlinear Dynamics, 2012, 69, 127-147.	2.7	27
11	Stability analysis of a substructured model of the rotating beam. Nonlinear Dynamics, 2009, 55, 355-372.	2.7	25
12	Design and analysis of a flexible linkage for robot safe operation in collaborative scenarios. Mechanism and Machine Theory, 2015, 92, 1-16.	2.7	23
13	3D-Simulation of human walking by parameter optimization. Archive of Applied Mechanics, 2012, 82, 533-556.	1,2	20
14	On the design of a scaled railroad vehicle for the validation of computational models. Mechanism and Machine Theory, 2017, 115, 60-76.	2.7	16
15	Design of Three New Cam-Based Constant-Force Mechanisms. Journal of Mechanical Design, Transactions of the ASME, 2018, 140, .	1.7	16
16	Linearization approaches for general multibody systems validated through stability analysis of a benchmark bicycle model. Nonlinear Dynamics, 2021, 103, 557-580.	2.7	15
17	On the theory and application of absolute coordinates-based multibody modelling of the rigid–flexible coupled dynamics of a deep-sea ROV-TMS (tether management system) integrated model. Ocean Engineering, 2022, 258, 111748.	1.9	14
18	Dynamical analysis and design of active orthoses for spinal cord injured subjects by aesthetic and energetic optimization. Nonlinear Dynamics, 2016, 84, 559-581.	2.7	13

#	Article	IF	Citations
19	A Flexible Multibody Model of a Safety Robot Arm for Experimental Validation and Analysis of Design Parameters. Journal of Computational and Nonlinear Dynamics, 2014, 9, .	0.7	11
20	A rotary and reciprocating scintillator based fast-ion loss detector for the MAST-U tokamak. Review of Scientific Instruments, 2018, 89, 101112.	0.6	11
21	Design and analysis of a constant-force bench press. Mechanism and Machine Theory, 2019, 142, 103612.	2.7	10
22	Analytical and numerical study of the influence of different support types in the nonlinear vibrations of beams. European Journal of Mechanics, A/Solids, 2021, 85, 104113.	2.1	10
23	Finite element analysis of the geometric stiffening effect. Part 1: A correction in the floating frame of reference formulation. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2005, 219, 187-202.	0.5	9
24	Finite element analysis of the geometric stiffening effect. Part 2: Non-linear elasticity. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2005, 219, 203-211.	0.5	8
25	A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors. Review of Scientific Instruments, 2016, 87, 11E705.	0.6	8
26	A New Electromechanical Analogy Approach Based on Electrostatic Coupling for Vertical Dynamic Analysis of Planar Vehicle Models. IEEE Access, 2021, 9, 119492-119502.	2.6	8
27	Nonlinear modelling and simulation of vibrocompaction processes. International Journal of Non-Linear Mechanics, 2018, 102, 101-111.	1.4	6
28	Study of the forward locomotion of a three-dimensional multibody model of a Waveboard by inverse dynamics. Mechanism and Machine Theory, 2020, 149, 103826.	2.7	6
29	Detection of Communities within the Multibody System Dynamics Network and Analysis of Their Relations. Symmetry, 2019, 11, 1525.	1.1	6
30	Walking dynamics from mechanism models to parameter optimization. Procedia IUTAM, 2011, 2, 199-211.	1.2	5
31	Linear stability analysis of nonholonomic multibody systems. International Journal of Mechanical Sciences, 2021, 198, 106392.	3.6	5
32	Nonlinear solutions for the steady state oscillations of a clamped–free rotating beam. European Journal of Mechanics, A/Solids, 2022, 91, 104413.	2.1	5
33	Thermo-mechanical assessment of the JT-60SA fast-ion loss detector. Fusion Engineering and Design, 2021, 167, 112304.	1.0	4
34	Experimental validation of a constant-force mechanism and analysis of its performance with a calibrated multibody model. Mechanism and Machine Theory, 2022, 173, 104819.	2.7	4
35	A fast model to resolve the velocity-space of fast-ion losses detected in ASDEX Upgrade and MAST Upgrade. Journal of Instrumentation, 2019, 14, C09015-C09015.	0.5	3
36	Design of trajectories and torques by parameter optimization for the bench press exercise on a Smith machine. Mechanism and Machine Theory, 2021, 155, 104089.	2.7	3

#	Article	IF	CITATIONS
37	Role of Link Flexibility and Variable Stiffness Actuator on Collision Safety for Service Robots. Mechanisms and Machine Science, 2013, , 499-507.	0.3	2
38	Stability analysis of a waveboard multibody model with toroidal wheels. Multibody System Dynamics, 2021, 53, 173-203.	1.7	2
39	Linear Stability Analysis of a Bicycle Multibody Model with Toroidal Wheels. , 2022, , 477-487.		2
40	Stability and Bifurcation Analysis of a Rotating Beam Substructured Model. , 2009, , .		1
41	Using simple estimates for the flexural stiffness of thick FDM beams based on sandwich beam models. Rapid Prototyping Journal, 2021, 27, 120-130.	1.6	1
42	Formulation of Three-Dimensional Rigid-Flexible Multibody Systems., 2007,, 1091.		0
43	Study of the Contribution of Nonlinear Normal Modes (NNMs) in Large Amplitude Oscillations of Simply Supported Beams. Procedia Engineering, 2017, 199, 625-630.	1.2	0