Roman Jaskulski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3505700/publications.pdf

Version: 2024-02-01

		1040056	888059
55	399	9	17
papers	citations	h-index	g-index
57	57	57	321
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Calcined Clay as Supplementary Cementitious Material. Materials, 2020, 13, 4734.	2.9	69
2	Measuring and Time Variability of The Sorptivity of Concrete. Procedia Engineering, 2013, 57, 634-641.	1.2	36
3	Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition. Journal of Renewable Materials, 2017, 5, 53-61.	2.2	31
4	Holistic Analysis of Waste Copper Slag Based Concrete by Means of EIPI Method. Buildings, 2020, 10, 1.	3.1	27
5	Influence of SCM on the Permeability of Concrete with Recycled Aggregate. Periodica Polytechnica: Civil Engineering, 2016, 60, 583-590.	0.6	22
6	Properties of Concretes with Natural Aggregate Improved by RCA Addition. Procedia Engineering, 2015, 108, 30-38.	1.2	21
7	Ecological High Performance Concrete. Procedia Engineering, 2017, 172, 595-603.	1.2	17
8	Application of a non-stationary method in determination of the thermal properties of radiation shielding concrete with heavy and hydrous aggregate. International Journal of Heat and Mass Transfer, 2019, 130, 882-892.	4.8	15
9	Torrent air permeability and sorptivity of concrete made with the use of air entraining agent and citric acid as setting retardant. Construction and Building Materials, 2021, 268, 121703.	7.2	15
10	Application of Image Analysis to Identify Quartz Grains in Heavy Aggregates Susceptible to ASR in Radiation Shielding Concrete. Materials, 2016, 9, 224.	2.9	11
11	High Performance Concrete with SCM and Recycled Aggregate. Key Engineering Materials, 0, 677, 233-240.	0.4	10
12	Variability of Sorptivity in the Concrete Element According to the Method of Compacting. Procedia Engineering, 2016, 153, 355-360.	1.2	8
13	Assessment of Rational Design of Self-Compacting Concrete Incorporating Fly Ash and Limestone Powder in Terms of Long-Term Durability. Materials, 2020, 13, 2863.	2.9	8
14	Long-term behaviour of ceramic powder containing concrete for pavement blocks. International Journal of Pavement Engineering, 2020, , 1-8.	4.4	8
15	Utilization of Fine Recycled Aggregate and the Calcareous Fly Ash in CLSM Manufacturing. Advanced Materials Research, 0, 1054, 199-204.	0.3	6
16	Numerical identification of the thermal properties of early age concrete using inverse heat transfer problem. Heat and Mass Transfer, 2019, 55, 1215-1227.	2.1	6
17	The Effect of Vibro-Activation Time on the Properties of Highly Active Calcium Hydroxide. Buildings, 2020, 10, 111.	3.1	6
18	Model for Forecasting the Sorptivity of Concretes with Recycled Concrete Aggregate. Procedia Engineering, 2016, 153, 240-247.	1.2	5

#	Article	IF	CITATIONS
19	Probabilistic Analysis of Shear Resistance Assured by Concrete Compression. Procedia Engineering, 2017, 172, 449-456.	1.2	5
20	Estimation of Hydration Degree of Blended Cements with the Help of k-Values. Materials, 2019, 12, 2420.	2.9	5
21	SURFACE BLAST-CLEANING WASTE AS A REPLACEMENT OF FINE AGGREGATE IN CONCRETE. Architecture Civil Engineering Environment, 2017, 10, 89-94.	0.6	5
22	EVALUATION OF ECOLOGICAL CONCRETE USING MULTI-CRITERIA ECOLOGICAL INDEX AND PERFORMANCE INDEX APPROACH. Architecture Civil Engineering Environment, 2019, 12, 97-107.	0.6	5
23	New ways of utilizing lime in modern building technology. Materials Structures Technology, 2019, 2, 61-69.	0.1	5
24	Evolutionary identification method for determining thermophysical parameters of hardening concrete. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	4
25	INFLUENCE OF SELECTED MICRO ADDITIVES CONTENT ON THERMAL PROPERTIES OF GYPSUM. Architecture Civil Engineering Environment, 2019, 12, 69-79.	0.6	4
26	Zastosowanie stanowiska pomiarowego do badaÅ" przewodnictwa cieplnego materiaÅ,ów budowlanych metodÄ… "gorÄ…cego drutu― Scientific Review Engineering and Environmental Sciences, 2019, 28, 153-160.	0.5	4
27	Influence of Concrete Strength Probability Distribution on Safety Margin of Concrete Cross-section Subjected to Shear. Procedia Engineering, 2016, 153, 232-239.	1.2	3
28	Lightweight concrete with copper slag waste as sand substitution. MATEC Web of Conferences, 2018, 163, 03006.	0.2	3
29	Organic phosphorus compounds as heat release regulators in hardening shielding concrete. Construction and Building Materials, 2019, 209, 167-175.	7.2	3
30	Influence of Impregnation of Recycled Concrete Aggregate on the Selected Properties of Concrete. Materials, 2021, 14, 4611.	2.9	3
31	Improving of Concrete Tightness by Using Surface Blast-cleaning Waste as a Partial Replacement of Fine Aggregate. Periodica Polytechnica: Civil Engineering, 0, , .	0.6	3
32	Study on the effect of VMA admixture for concrete cured under different conditions on air permeability and sorptivity. Construction and Building Materials, 2022, 346, 128350.	7.2	3
33	Mechanical Properties and Resistance to Water Ingress of Cement Concrete Made with Non-Cyclic Alkanes. Advanced Materials Research, 0, 1054, 58-63.	0.3	2
34	Use of Quartz Sand to Produce Low Embodied Energy and Carbon Footprint Plaster. Journal of Sustainable Architecture and Civil Engineering, 2018, 21, .	0.5	2
35	Utilisation of Copper Slag Waste and Heavy-weight Aggregates for Production of Pre-cast shielding Concrete Elements. Journal of Sustainable Architecture and Civil Engineering, 2018, 22, .	0.5	2
36	WpÅ,yw wybranych mikrododatków na przewodnictwo cieplne oraz mikrostrukturÄ™ powierzchnimodyfikowanych gipsów. Acta Scientiarum Polonorum Architectura, 2019, 18, 69-75.	0.3	2

#	Article	IF	Citations
37	Monte Carlo Simulation of the Torsional Strength due to Concrete Compression of Reinforced Concrete Element. Applied Mechanics and Materials, 0, 797, 27-34.	0.2	1
38	Probabilistic Analysis of Shear Resistance due to Concrete Tension. Applied Mechanics and Materials, 2015, 797, 35-44.	0.2	1
39	Application of Granulated Cable Plastic Waste for Soil Stabilization. Key Engineering Materials, 0, 760, 171-175.	0.4	1
40	The influence of RCA addition on selected parameters of concrete. MATEC Web of Conferences, 2018, 196, 02018.	0.2	1
41	Transient method measured thermal properties of concrete with microspheres and latex based addition. MATEC Web of Conferences, 2018, 196, 04037.	0.2	1
42	Thermal properties of heavy concrete for small pre-cast shielding elements. AIP Conference Proceedings, 2020, , .	0.4	1
43	Influence of environmental impacts on sorptivity of concrete with CEM II/B-V and CEM III/A cement. Materials Structures Technology, 2018, 1, 10-17.	0.1	1
44	Comparative analysis of dependence of the elastic modulus of concrete on its composition. Materials Structures Technology, 2018, 1, 1-9.	0.1	1
45	Mechanical properties of copper slag waste based CLSM mixtures. , 0, , .		1
46	Probabilistic Modelling of Strength of Concretes with RCA. Key Engineering Materials, 0, 722, 207-215.	0.4	0
47	Influence of Mix Proportions on Water Absorption of RCA Concretes. Key Engineering Materials, 0, 722, 187-194.	0.4	0
48	Influence of Microwave Treatment on Properties of Concrete with Non-Cyclic Alkanes. Key Engineering Materials, 0, 677, 114-121.	0.4	0
49	Probabilistic analysis of the safety margin assured by shear strength models of stirrup reinforced concrete beams. MATEC Web of Conferences, 2017, 117, 00065.	0.2	0
50	Predicting of the compressive strength of RCA concrete. MATEC Web of Conferences, 2017, 117, 00066.	0.2	0
51	Influence of PCP Based Superplasticizer on Heat Emission During Portland Cement Hydration. IOP Conference Series: Materials Science and Engineering, 2019, 661, 012139.	0.6	0
52	MONITOROWANIE PARAMETRÓW TERMICZNYCH PROCESU TWARDNIENIA BETONÓW OSÅONOWYCH. Journal of Civil Engineering, Environment and Architecture, 2016, , .	0.0	0
53	Prognozowanie wytrzymaÅ,oÅ›ci na Å›ciskanie betonów z kruszywem z recyklingu z wykorzystaniem modelu w formie drzewa decyzyjnego. MateriaÅ y Budowlane, 2017, 1, 44-48.	0.1	0
54	RESISTANCE OF CONCRETE SURFACE AGAINST THE ACTION OF CHEMICAL DEICING SUBSTANCES. , 2018, , .		0

#	Article	IF	CITATIONS
55	Influence of partial replacement of sand with copper slag on the thermal properties of hardened concrete., 0,,.		O