
Gary W Reuther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3505240/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	JAK2 inhibitor persistence in MPN: uncovering a central role of ERK activation. Blood Cancer Journal, 2022, 12, 13.	6.2	9
2	Structural Insights into JAK2 Inhibition by Ruxolitinib, Fedratinib, and Derivatives Thereof. Journal of Medicinal Chemistry, 2021, 64, 2228-2241.	6.4	49
3	Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms. Frontiers in Immunology, 2020, 11, 604142.	4.8	5
4	Finding a Jill for JAK: Assessing Past, Present, and Future JAK Inhibitor Combination Approaches in Myelofibrosis. Cancers, 2020, 12, 2278.	3.7	15
5	HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms. Blood, 2020, 135, 191-207.	1.4	40
6	The pan-PIM inhibitor INCB053914 displays potent synergy in combination with ruxolitinib in models of MPN. Blood Advances, 2019, 3, 3503-3514.	5.2	22
7	RMC-4550, an Allosteric Inhibitor of SHP2, Displays Therapeutic Efficacy in Pre-Clinical Models of Myeloproliferative Neoplasms. Blood, 2019, 134, 4198-4198.	1.4	3
8	Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS ONE, 2018, 13, e0199108.	2.5	39
9	Potent Dual BET Bromodomain-Kinase Inhibitors as Value-Added Multitargeted Chemical Probes and Cancer Therapeutics. Molecular Cancer Therapeutics, 2017, 16, 1054-1067.	4.1	40
10	The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells. Oncotarget, 2015, 6, 40141-40157.	1.8	35
11	Single Molecule Dual JAK2-BET Inhibition As an MPN Therapeutic. Blood, 2015, 126, 2826-2826.	1.4	Ο
12	<scp>JAK</scp> 2â€ <scp>V</scp> 617 <scp>F</scp> â€mediated signalling is dependent on lipid rafts and statins inhibit <scp>JAK</scp> 2â€ <scp>V</scp> 617 <scp>F</scp> â€dependent cell growth. British Journal of Haematology, 2013, 160, 177-187.	2.5	40
13	ALK-Activating Homologous Mutations in LTK Induce Cellular Transformation. PLoS ONE, 2012, 7, e31733.	2.5	32
14	Activation of JAK2-V617F by Components of Heterodimeric Cytokine Receptors. Journal of Biological Chemistry, 2010, 285, 16651-16663.	3.4	28
15	Aggressive myeloid leukemia formation is directed by the Musashi 2/Numb pathway. Cancer Biology and Therapy, 2010, 10, 979-982.	3.4	26
16	CRLF2 and JAK2 in B-Progenitor Acute Lymphoblastic Leukemia: A Novel Association in Oncogenesis. Cancer Research, 2010, 70, 7347-7352.	0.9	52
17	Activation of JAK2-V617F by Heterodimeric Receptor Components Blood, 2009, 114, 2955-2955.	1.4	0
18	JAK2 activation in myeloproliferative neoplasms: A potential role for heterodimeric receptors. Cell Cycle, 2008, 7, 714-719.	2.6	11

#	Article	IF	CITATIONS
19	A Component of a Heterodimeric Receptor Can Functionally Replace a Homodimeric Receptor in Supporting the Activation and Transforming Activity of JAK2-V617F. Blood, 2008, 112, 3732-3732.	1.4	Ο
20	Transformation of hematopoietic cells and activation of JAK2-V617F by IL-27R, a component of a heterodimeric type I cytokine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18502-18507.	7.1	55