Shengchao Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of Oxygen Control and Its Effect on Inclusion Characteristics during Electroslag Remelting of Die Steel. Steel Research International, 2012, 83, 472-486.	1.8	91
2	A Sulphide Capacity Prediction Model of CaO–SiO2–MgO–Al2O3 Ironmaking Slags Based on the Ion and Molecule Coexistence Theory. ISIJ International, 2010, 50, 1362-1372.	1.4	73
3	A Thermodynamic Model for Calculating Sulphur Distribution Ratio between CaO–SiO2–MgO–Al2O3 Ironmaking Slags and Carbon Saturated Hot Metal Based on the Ion and Molecule Coexistence Theory. ISIJ International, 2009, 49, 1828-1837.	1.4	72
4	Investigation of Oxide Inclusions and Primary Carbonitrides in Inconel 718 Superalloy Refined through Electroslag Remelting Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 1596-1607.	2.1	70
5	Control of MgO·Al2O3 Spinel Inclusions during Protective Gas Electroslag Remelting of Die Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 378-389.	2.1	56
6	Effect of Cooling Rate on Microsegregation During Solidification of Superalloy INCONEL 718 Under Slow-Cooled Conditions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1883-1897.	2.1	37
7	Investigation of the Oxidation Behaviour of Ti and Al in Inconel 718 Superalloy During Electroslag Remelting. Scientific Reports, 2018, 8, 5232.	3.3	23
8	A thermodynamic model for calculating manganese distribution ratio between CaO–SiO ₂ –MgO–FeO–MnO–Al ₂ O ₃ –TiO ₂ –TiO ironmaking slags and carbon saturated hot metal based on the IMCT. Ironmaking and Steelmaking, 2018, 45, 655-664	aF _{2 2.1}	2
9	Influence of Tempering Time on the Microstructure and Mechanical Properties of AISI M42 High-Speed Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5976-5986.	2.2	22
10	Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 1056-1064.	4.9	21
11	Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 353-364.	2.1	21
12	A Review of Methodology Development for Controlling Loss of Alloying Elements During the Electroslag Remelting Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 3055-3071.	2.1	19
13	Investigation of desulfurization of Inconel 718 superalloys by ESR type slags with different TiO2 content. Journal of Materials Research and Technology, 2019, 8, 2508-2516.	5.8	17
14	A phosphorus distribution prediction model for CaO–SiO ₂ –MgO–FeO–Fe ₂ O ₃ –Al ₂ O _{3slags based on the IMCT. Ironmaking and Steelmaking, 2020, 47, 771-780.})> â €"P <sı< td=""><td>ıb1ՁC</td></sı<>	ıb 1 ՁC
15	Influence of the Nitrogen Content on the Carbide Transformation of AISI M42 High-Speed Steels during Annealing. Scientific Reports, 2018, 8, 4328.	3.3	14
16	Chemical composition and structural identification of primary carbides in as-cast H13 steel. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 839-848.	4.9	14
17	Effect of Sulfur Content on the Properties and MnS Morphologies of DH36 Structural Steel. Metals, 2018, 8, 945.	2.3	11
18	Effects of Nitrogen on the Morphology and Evolution of M2C Eutectic Carbides in Fe-Mo-W-Co-Cr-V-C Alloy. Jom, 2020, 72, 326-332.	1.9	11

SHENGCHAO DUAN

#	Article	IF	CITATIONS
19	Determination of thermodynamic properties in full composition range of Ti-Al binary melts based on atom and molecule coexistence theory. Transactions of Nonferrous Metals Society of China, 2018, 28, 1256-1264.	4.2	9
20	Solidification and Segregation Behaviors of Superalloy IN718 at a Slow Cooling Rate. Materials, 2018, 11, 2398.	2.9	9
21	The Methodology Development for Improving Energy Utilization and Reducing Fluoride Pollution of the Electroslag Remelting Process: A Review. Steel Research International, 2020, 91, 1900634.	1.8	9
22	Evolution of plasticized MnO-Al2O3-SiO2-based nonmetallic inclusion in 18wt%Cr-8wt%Ni stainless steel and its properties during soaking process. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 328-339.	4.9	8
23	Determination of the thermodynamic properties of Ni-Ti, Ni-Al, and Ti-Al, and nickel-rich Ni-Al-Ti melts based on the atom and molecule coexistence theory. Journal of Molecular Liquids, 2019, 294, 111462.	4.9	7
24	Determination of viscosity and surface tension of liquid Ni–Al–Ti system using the evaluated thermodynamic properties by AMCT. Journal of Materials Science, 2020, 55, 11071-11085.	3.7	7
25	Oxidation behavior of boron in 9CrMoCoB steel by CaF2–CaO–Al2O3–SiO2–B2O3 electroslag remelting (ESR) type slag. Journal of Materials Research and Technology, 2022, 17, 574-585.	5.8	7
26	Determination of Three-Dimensional Morphology and Inner Structure of Second-Phase Inclusions in Metals by Non-Aqueous Solution Electrolytic and Room Temperature Organic Methods. Metals, 2018, 8, 68.	2.3	6
27	Investigation of the kinetic mechanism of the demanganization reaction between carbon-saturated liquid iron and CaF2–CaO–SiO2-based slags. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 399-404.	4.9	5
28	Solidified Structure Refinement of H13 Tool Steel under a Multi-Rotational Speed Super Gravity Field. Metals, 2020, 10, 1428.	2.3	5
29	Evaluating oxygen level of Si-deoxidized H13 die steel using ferrous oxide-containing slags at 1873ÂK. Journal of Iron and Steel Research International, 2021, 28, 978-989.	2.8	4
30	Effect of sulphur content on precipitates and properties of DH36 structural steel. Ironmaking and Steelmaking, 2019, 46, 550-557.	2.1	3
31	Deoxidation of H13 tool steel with CaF2-MgO-CaO-Al2O3-SiO2 slags at 1873 K. Journal of Central South University, 2021, 28, 370-385.	3.0	2
32	Effect of Temperature on the Oxidation Behavior of Al and Ti in Inconel® 718 Alloy by ESR Slag with Different Amounts of CaO. Jom, 2022, 74, 1228-1236.	1.9	2
33	Comparison of Oxidation Behavior of Various Reactive Elements in Alloys during Electroslag Remelting (ESR) Process: An Overview. ISIJ International, 2022, 62, 1561-1572.	1.4	2
34	A thermodynamic model of calculating mass action concentrations for structural units or ion couples in NaClO4-H2O and NaF-H2O binary solutions and NaClO4-NaF-H2O ternary solution. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 546-557.	4.9	1
35	Thermodynamic analysis for the oxidation behaviour of manganese in iron-based melts during demanganisation processes. Ironmaking and Steelmaking, 2019, 46, 755-760.	2.1	1
36	Characteristics and Transformation Mechanism of Nonmetallic Inclusions in 304 Stainless Steel during Heat Treatment at 1250 ŰC. Materials, 2020, 13, 5396.	2.9	1

#	Article	IF	CITATIONS
37	Effect of SiO ₂ and TiO ₂ on the Crystal Morphology of CaF ₂ Al ₂ O ₃ CaOâ€Based Electroslag Remelting Slag. Steel Research International, 2022, 93, 2100191.	1.8	1
38	Thermodynamic properties prediction of Mg-Al-Zn melts based on the atom and molecule coexistence theory. Journal of Mining and Metallurgy, Section B: Metallurgy, 2019, 55, 135-145.	0.8	0