Puru Jena

List of Publications by Citations

Source: https://exaly.com/author-pdf/3504734/puru-jena-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25,827 615 78 131 h-index g-index citations papers 650 27,931 5.1 7.44 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
615	Penta-graphene: A new carbon allotrope. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2372-7	11.5	763
614	Ferromagnetism in semihydrogenated graphene sheet. <i>Nano Letters</i> , 2009 , 9, 3867-70	11.5	686
613	Materials for Hydrogen Storage: Past, Present, and Future. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 206-211	6.4	676
612	Clustering of Ti on a C60 surface and its effect on hydrogen storage. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14582-3	16.4	606
611	Assembling crystals from clusters. <i>Physical Review Letters</i> , 1992 , 69, 1664-1667	7.4	504
610	First-principles study of hydrogen storage on Li12C60. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9741-5	16.4	474
609	Hydrogen interactions with defects in crystalline solids. <i>Reviews of Modern Physics</i> , 1992 , 64, 559-617	40.5	417
608	Vacancy-induced magnetism in ZnO thin films and nanowires. <i>Physical Review B</i> , 2008 , 77,	3.3	381
607	Atomic clusters: Building blocks for a class of solids. <i>Physical Review B</i> , 1995 , 51, 13705-13716	3.3	367
606	Structures and Phase Transition of a MoS2 Monolayer. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1515-	1 <u>\$</u> .82	356
605	Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis. <i>Journal of Chemical Physics</i> , 1999 , 111, 1890-1904	3.9	314
604	Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. <i>Chemical Reviews</i> , 2018 , 118, 5755-5870	68.1	265
603	Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. <i>Physical Review B</i> , 2010 , 81,	3.3	247
602	Magic numbers in metallo-inorganic clusters: chromium encapsulated in silicon cages. <i>Physical Review Letters</i> , 2002 , 89, 016803	7.4	227
601	Beyond the Periodic Table of Elements: The Role of Superatoms. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1432-42	6.4	207
600	Electronic structure and properties of transition metal-benzene complexes. <i>Journal of the American Chemical Society</i> , 2001 , 123, 3799-808	16.4	207
599	Clusters: a bridge across the disciplines of physics and chemistry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10560-9	11.5	201

(2016-2016)

598	Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 8777-84	3.6	198
597	Direct observation of key reaction intermediates on gold clusters. <i>Journal of the American Chemical Society</i> , 2003 , 125, 2848-9	16.4	196
596	Electric field enhanced hydrogen storage on polarizable materials substrates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 2801-6	11.5	194
595	Binding of hydrogen molecules by a transition-metal ion. <i>Physical Review Letters</i> , 1992 , 68, 2277-2280	7.4	191
594	Potential of AlN nanostructures as hydrogen storage materials. ACS Nano, 2009, 3, 621-6	16.7	183
593	Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4. <i>Nano Letters</i> , 2009 , 9, 1501-5	11.5	180
592	Electronic structures and bonding of graphyne sheet and its BN analog. <i>Journal of Chemical Physics</i> , 2011 , 134, 174701	3.9	163
591	Unexpected stability of Al4H6: a borane analog?. <i>Science</i> , 2007 , 315, 356-8	33.3	155
590	Physics of small metal clusters: Topology, magnetism, and electronic structure. <i>Physical Review B</i> , 1985 , 32, 2058-2069	3.3	152
589	Spin conservation accounts for aluminum cluster anion reactivity pattern with O2. <i>Science</i> , 2008 , 319, 438-42	33.3	147
588	The Intrinsic Ferromagnetism in a MnO2 Monolayer. Journal of Physical Chemistry Letters, 2013, 4, 3382	2-6 .4	142
5 ⁸ 7	Giant magnetic moments of nitrogen-doped Mn clusters and their relevance to ferromagnetism in Mn-doped GaN. <i>Physical Review Letters</i> , 2002 , 89, 185504	7.4	138
586	Systematic Study of Oxo, Peroxo, and Superoxo Isomers of 3d-Metal Dioxides and Their Anions. Journal of Physical Chemistry A, 2000 , 104, 11961-11971	2.8	138
585	Atomically Thin Transition-Metal Dinitrides: High-Temperature Ferromagnetism and Half-Metallicity. <i>Nano Letters</i> , 2015 , 15, 8277-81	11.5	132
584	Functionalized Graphitic Carbon Nitride for Efficient Energy Storage. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 6055-6059	3.8	131
583	Hyperhalogens: discovery of a new class of highly electronegative species. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 8966-70	16.4	131
582	Hydrogen storage and the 18-electron rule. <i>Journal of Chemical Physics</i> , 2006 , 124, 224703	3.9	128
581	Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN2 Sheet. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 3993-3998	3.8	125

580	Origin of the unusual stability of MnO40 <i>Chemical Physics Letters</i> , 1999 , 312, 598-605	2.5	125
579	Geometry and electronic structure of Vn(Bz)m complexes. <i>Journal of Chemical Physics</i> , 2004 , 120, 1041	1-32.33	124
578	Magnetism and local order: Ab initio tight-binding theory. <i>Physical Review B</i> , 1989 , 39, 6914-6924	3.3	119
577	Electronic structure and magnetism of Rhn (n=2🛭3) clusters. <i>Physical Review B</i> , 1999 , 59, 5214-5222	3.3	117
576	Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes. <i>Journal of Chemical Theory and Computation</i> , 2009 , 5, 374-9	6.4	115
575	Three-dimensional metallic boron nitride. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18216-27	l 16.4	113
574	Structure and bonding of Au5M (M=Na, Mg, Al, Si, P, and S) clusters. <i>Physical Review B</i> , 2006 , 74,	3.3	110
573	EGraphene: A New Metallic Allotrope of Planar Carbon with Potential Applications as Anode Materials for Lithium-Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3234-3241	6.4	109
572	Carrier-mediated ferromagnetism in N codoped (Zn,Mn)O (101D) thin films. <i>Physical Review B</i> , 2004 , 70,	3.3	109
571	Atomic and electronic structure of neutral and charged SinOm clusters. <i>Journal of Chemical Physics</i> , 1998 , 109, 1245-1250	3.9	108
570	Anomalous magnetism in small Mn clusters. <i>Chemical Physics Letters</i> , 1998 , 289, 473-479	2.5	106
569	Optical properties of Ti3SiC2 and Ti4AlN3. <i>Applied Physics Letters</i> , 2008 , 92, 221907	3.4	106
568	Magnetism in small vanadium clusters. <i>Physical Review B</i> , 1991 , 43, 8179-8182	3.3	106
567	Physics of Nickel Clusters. 2. Electronic Structure and Magnetic Properties. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 1748-1759	2.8	105
566	Appearance of bulk properties in small tungsten oxide clusters. <i>Journal of Chemical Physics</i> , 2004 , 121, 9417-22	3.9	105
565	Electronic structure of chromium oxides, CrOnland CrOn (n=18) from photoelectron spectroscopy and density functional theory calculations. <i>Journal of Chemical Physics</i> , 2001 , 115, 7935-79	944	105
564	Temperature Dependence of Electric Field Gradients in Noncubic Metals. <i>Physical Review Letters</i> , 1976 , 36, 418-421	7.4	104
563	Interactions of Au cluster anions with oxygen. <i>Journal of Chemical Physics</i> , 2004 , 120, 6510-5	3.9	101

(2009-2013)

562	Stable three-dimensional metallic carbon with interlocking hexagons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 18809-13	11.5	100
561	Electronic structure of hydrogen in simple metals. <i>Physical Review B</i> , 1978 , 17, 3518-3524	3.3	99
560	Superalkalis and superhalogens as building blocks of supersalts. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 638-45	2.8	98
559	Unique magnetic signature of transition metal atoms supported on benzene. <i>Chemical Physics Letters</i> , 2000 , 321, 142-150	2.5	97
558	Physics of Nickel Clusters: Energetics and Equilibrium Geometries. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 1072-1080	2.8	96
557	Storage of molecular hydrogen in B-N cage: energetics and thermal stability. <i>Nano Letters</i> , 2005 , 5, 127	317 1.5	96
556	Electronic, magnetic, and geometric structure of metallo-carbohedrenes. <i>Science</i> , 1992 , 258, 1640-3	33.3	95
555	Electronic Structure of the 3d Metal Monoxide Anions. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 5374-	-523879	94
554	Superhalogens as building blocks of halogen-free electrolytes in lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13916-9	16.4	93
553	Atomic and electronic structures of neutral and charged boron and boron-rich clusters. <i>Journal of Chemical Physics</i> , 1997 , 107, 132-140	3.9	92
552	The rise of two-dimensional van der Waals ferroelectrics. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2018 , 8, e1365	7.9	89
551	Ferromagnetism in Mn-doped GaN nanowires. <i>Physical Review Letters</i> , 2005 , 95, 167202	7.4	89
550	Electronic signature of the magicity and ionic bonding in Al13X (X=LiK) clusters. <i>Physical Review B</i> , 2002 , 65,	3.3	89
549	Superhalogen Properties of Fluorinated Coinage Metal Clusters (<i>Journal of Physical Chemistry C</i> , 2010 , 114, 16018-16024	3.8	87
548	Ferromagnetism in small clusters. <i>Physical Review Letters</i> , 1991 , 66, 938-941	7.4	84
547	Closo-alanes (Al4H4, AlnHn+2, 4 . <i>Journal of the American Chemical Society</i> , 2007 , 129, 5969-75	16.4	83
546	Stabilization of Si60 cage structure. <i>Physical Review Letters</i> , 2003 , 90, 135503	7.4	83
545	Functionalized heterofullerenes for hydrogen storage. <i>Applied Physics Letters</i> , 2009 , 94, 013111	3.4	82

544	Designing ionic solids from metallic clusters. <i>Chemical Physics Letters</i> , 1994 , 219, 479-483	2.5	82
543	Clusters: a bridge across the disciplines of environment, materials science, and biology. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10554-9	11.5	81
542	Equilibrium Geometry, Stability, and Magnetic Properties of Small MnO Clusters. <i>Journal of the American Chemical Society</i> , 1999 , 121, 644-652	16.4	81
541	Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13524		80
540	Magnetic properties of transition-metal-doped Zn1\(TxO (T=Cr, Mn, Fe, Co, and Ni) thin films with and without intrinsic defects: A density functional study. <i>Physical Review B</i> , 2009 , 79,	3.3	79
539	Relationship between magnetism, topology, and reactivity of Rh clusters. <i>Physical Review B</i> , 1997 , 56, 8849-8854	3.3	79
538	Role of catalysts in dehydrogenation of MgH2 nanoclusters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 8227-31	11.5	79
537	AlH(3) and Al(2)H(6): magic clusters with unmagical properties. <i>Physical Review Letters</i> , 2001 , 86, 692-5	7.4	78
536	Hydrogen Uptake by an Alkali Metal Ion. <i>Europhysics Letters</i> , 1992 , 20, 307-312	1.6	78
535	Spontaneous fragmentation of multiply charged metal clusters. <i>Physical Review Letters</i> , 1987 , 58, 1188-	1/1.91	78
534	Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. <i>Physical Review B</i> , 2013 , 87,	3.3	77
533	Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes. <i>Physical Review B</i> , 2011 , 84,	3.3	77
532	Lattice thermal conductivity of penta-graphene. <i>Carbon</i> , 2016 , 105, 424-429	10.4	77
531	Li-rich antiperovskite superionic conductors based on cluster ions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11046-11051	11.5	76
530	Magic rule for Al(n)H(m) magic clusters. <i>Physical Review Letters</i> , 2007 , 98, 256802	7.4	76
529	Anomalous behavior of atomic hydrogen interacting with gold clusters. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14205-9	16.4	76
528	Structure and stability of BF3*F and AlF3*F superhalogens. <i>Chemical Physics Letters</i> , 1998 , 292, 289-294	2.5	75
527	Evolution of bonding in AlnN clusters: A transition from nonmetallic to metallic character. <i>Physical Review B</i> , 1998 , 57, 3787-3790	3.3	75

526	Super-ion inspired colorful hybrid perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4728-	47337	74
525	Manganese-based magnetic superhalogens. Angewandte Chemie - International Edition, 2011 , 50, 2568-	7 2 6.4	74
524	Vacancy-mediated hydrogen desorption in NaAlH4. <i>Physical Review B</i> , 2005 , 72,	3.3	74
523	Interaction of H2 and He with metal atoms, clusters, and ions. <i>Physical Review B</i> , 1995 , 51, 4475-4484	3.3	70
522	Quantum anomalous Hall effect in ferromagnetic transition metal halides. <i>Physical Review B</i> , 2017 , 95,	3.3	69
521	Role of titanium in hydrogen desorption in crystalline sodium alanate. <i>Applied Physics Letters</i> , 2005 , 86, 251913	3.4	67
520	Comment on "Combinatorial search for optimal hydrogen-storage nanomaterials based on polymers". <i>Physical Review Letters</i> , 2006 , 97, 209601	7.4	66
519	Electronic Structure and Properties of FeOn and FeOn- Clusters. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 5812-5822	2.8	66
518	Interpretation of hyperfine fields in concentrated ferromagnetic alloys. <i>Solid State Communications</i> , 1974 , 15, 139-142	1.6	66
517	Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage. <i>Carbon</i> , 2011 , 49, 4050-4058	10.4	65
516	Periodic table of 3d-metal dimers and their ions. <i>Journal of Chemical Physics</i> , 2004 , 121, 6785-97	3.9	65
515	Structure and stability of the AlX and AlXI pecies. <i>Journal of Chemical Physics</i> , 1999 , 110, 2928-2935	3.9	65
514	Ferromagnetism in Mn-doped GaN: From clusters to crystals. <i>Physical Review B</i> , 2003 , 68,	3.3	64
513	Isomers of Al13 clusters and their interaction with alkali atoms. <i>Physical Review B</i> , 2000 , 62, 4666-4671	3.3	64
512	Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers. <i>ACS Applied Materials & Dioxide Samp; Interfaces</i> , 2016 , 8, 14648-55	9.5	64
511	Borane derivatives: a new class of super- and hyperhalogens. <i>ChemPhysChem</i> , 2011 , 12, 2423-8	3.2	63
510	Isomerism and Novel Magnetic Order in Mn13 Cluster. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 9853-	9 <u>8</u> .\$6	63
509	Stability of doubly charged transition-metal dimers. <i>Physical Review Letters</i> , 1987 , 59, 2562-2565	7.4	63

508	A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties. <i>Scientific Reports</i> , 2015 , 5, 14342	4.9	62
507	First-principles calculations of metal stabilized Si20 cages. <i>Physical Review B</i> , 2002 , 65,	3.3	62
506	Ab initio calculation of interatomic potentials and electronic properties of a simple metal Al. <i>Physical Review B</i> , 1981 , 24, 7057-7070	3.3	62
505	Stability and magnetic properties of iron atoms encapsulated in Si clusters. <i>Chemical Physics Letters</i> , 2003 , 373, 433-438	2.5	61
504	Clusters: a bridge between disciplines. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10552-3	11.5	60
503	Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic. <i>Physical Review B</i> , 2012 , 85,	3.3	59
502	Giant Magnetic Moments and Magnetic Bistability of Stoichiomatric MnO Clusters. <i>Physical Review Letters</i> , 1998 , 81, 2970-2973	7.4	59
501	Theoretical study of the stability and electronic structure of Al(BH4)n=1- g and Al(BF4)n=1- g and their hyperhalogen behavior. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 10237-43	2.8	58
500	Electronic structure of substoichiometric Fe-Al intermetallics. <i>Physical Review B</i> , 2002 , 66,	3.3	58
499	Evolution of the electronic and structural properties of microclusters. <i>Physical Review B</i> , 1987 , 36, 953-	·9 6 B	58
498	Competition between linear and cyclic structures in monochromium carbide clusters CrCn- and CrCn (n = 2-8): a photoelectron spectroscopy and density functional study. <i>Journal of Chemical Physics</i> , 2004 , 120, 8996-9008	3.9	57
497	FeO4: A unique example of a closed-shell cluster mimicking a superhalogen. <i>Physical Review A</i> , 1999 , 59, 3681-3684	2.6	57
496	Stability of B12 (CN)12 (2-): Implications for Lithium and Magnesium Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3704-8	16.4	57
495	Ferromagnetism in Cr-doped GaN: A first-principles calculation. <i>Physical Review B</i> , 2004 , 69,	3.3	56
494	Magnetic coupling between Cr atoms doped at bulk and surface sites of ZnO. <i>Applied Physics Letters</i> , 2005 , 87, 162509	3.4	56
493	Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles. <i>Nano-Micro Letters</i> , 2018 , 10, 4	19.5	55
492	Magnetism and energetics of Mn-Doped ZnO (101🗅) thin films. <i>Physical Review B</i> , 2004 , 69,	3.3	55
491	Equilibrium geometries, electronic structure and magnetic properties of small manganese clusters. Journal of Physics Condensed Matter, 1998 , 10, 10863-10877	1.8	55

(2016-2019)

490	Mechanistic Insight into Photocatalytic Pathways of MIL-100(Fe)/TiO Composites. <i>ACS Applied Materials & ACS Applied</i> Materials & Material	9.5	54	
489	Antiferromagnetic coupling driven by bond length contraction near the Ga1-xMnxN film surface. <i>Physical Review Letters</i> , 2004 , 93, 155501	7.4	54	
488	Quantum chemical study of adhesion at the SiC/Al interface. <i>Journal of Applied Physics</i> , 1988 , 64, 6246-6	6253	54	
487	Lithium-doped triazine-based graphitic C3N4 sheet for hydrogen storage at ambient temperature. <i>Computational Materials Science</i> , 2014 , 81, 275-279	3.2	53	
486	Evidence for a new class of solids. First-principles study of K(Al13). <i>Chemical Physics Letters</i> , 1996 , 248, 213-217	2.5	53	
485	Equilibrium structure and bonding of small ironBarbon clusters. <i>Journal of Chemical Physics</i> , 1996 , 105, 11020-11023	3.9	53	
484	Magnetism and local order. II. Self-consistent cluster calculations. <i>Physical Review B</i> , 1989 , 40, 399-406	3.3	53	
483	Patterning Graphitic C-N Sheets into a Kagome Lattice for Magnetic Materials. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 259-63	6.4	52	
482	Models of electronic structure of hydrogen in metals: Pd-H. <i>Physical Review B</i> , 1979 , 20, 3543-3551	3.3	52	
481	Electronic structure and geometries of heteroatomic clusters. <i>Physical Review B</i> , 1988 , 37, 2867-2873	3.3	51	
480	Electron Distribution around a Magnetic Impurity in a Nonmagnetic Host. <i>Physical Review B</i> , 1973 , 7, 439-450	3.3	51	
479	Structure and properties of Fe(n), Fe(n)-, and Fe(n)+ clusters, n = 7-20. <i>Journal of Physical Chemistry</i> A , 2012 , 116, 10218-28	2.8	50	
478	Synthesis and characterization of highly porous borazine-linked polymers and their performance in hydrogen storage application. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10629		50	
477	A systematic study of neutral and charged 3d-metal trioxides and tetraoxides. <i>Journal of Chemical Physics</i> , 2011 , 134, 144305	3.9	50	
476	Theoretical study of deep-defect states in bulk PbTe and in thin films. <i>Physical Review B</i> , 2007 , 76,	3.3	50	
475	Ferrimagnetism in Mn7 cluster. <i>Chemical Physics Letters</i> , 2003 , 378, 374-379	2.5	50	
474	Energetics and electronic structure of carbon doped aluminum clusters. <i>Journal of Chemical Physics</i> , 2001 , 115, 778-783	3.9	50	
473	Molecular Origin of Properties of Organic-Inorganic Hybrid Perovskites: The Big Picture from Small Clusters. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1596-603	6.4	50	

472	Body-Centered Tetragonal C : A Novel Topological Node-Line Semimetallic Carbon Composed of Tetrarings. <i>Small</i> , 2017 , 13, 1602894	11	49
471	Superhalogen properties of CuF(n) clusters. <i>Journal of Chemical Physics</i> , 2009 , 131, 124301	3.9	49
470	Structures and photoelectron spectroscopy of Cu(n)(BO2)m-(n, m=1, 2) clusters: observation of hyperhalogen behavior. <i>Journal of Chemical Physics</i> , 2011 , 134, 094309	3.9	49
469	Structure of SiAu16: can a silicon atom be stabilized in a gold cage?. <i>Journal of Chemical Physics</i> , 2007 , 127, 214706	3.9	49
468	Experimental and theoretical study of the photoelectron spectra of MnOx(k=1B) clusters. <i>Journal of Chemical Physics</i> , 2000 , 113, 1473-1483	3.9	49
467	Switendick criterion for stable hydrides. <i>Physical Review B</i> , 1985 , 31, 6726-6730	3.3	49
466	Rational design of super-alkalis and their role in CO activation. <i>Nanoscale</i> , 2017 , 9, 4891-4897	7.7	47
465	Exceptional Thermoelectric Properties of Layered GeAs2. <i>Chemistry of Materials</i> , 2017 , 29, 9300-9307	9.6	47
464	Ferromagnetic GaNCr Nanowires. <i>Nano Letters</i> , 2005 , 5, 1587-90	11.5	47
463	Alkalization of aluminum clusters. <i>Journal of Chemical Physics</i> , 2000 , 113, 1508-1513	3.9	47
462	Structure and properties of the aluminum horates Al/DO2\n and Al/DO2\n() (n = 1.4) Journal of		
	Structure and properties of the aluminum borates Al(BO2)n and Al(BO2)n(-), (n = 1-4). <i>Journal of Computational Chemistry</i> , 2012 , 33, 416-24	3.5	46
461		3·5 2.8	46
461 460	Computational Chemistry, 2012 , 33, 416-24 A recipe for designing molecules with ever-increasing electron affinities. <i>Journal of Physical</i>		
	A recipe for designing molecules with ever-increasing electron affinities. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 1469-74 Strain-Induced Spin Crossover in Phthalocyanine-Based Organometallic Sheets. <i>Journal of Physical</i>	2.8	46
460	A recipe for designing molecules with ever-increasing electron affinities. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 1469-74 Strain-Induced Spin Crossover in Phthalocyanine-Based Organometallic Sheets. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 3109-14 Density Functional Theory Study of the Interaction of Hydrogen with Li6C60. <i>Journal of Physical</i>	2.8	46
460 459	A recipe for designing molecules with ever-increasing electron affinities. Journal of Physical Chemistry A, 2012, 116, 1469-74 Strain-Induced Spin Crossover in Phthalocyanine-Based Organometallic Sheets. Journal of Physical Chemistry Letters, 2012, 3, 3109-14 Density Functional Theory Study of the Interaction of Hydrogen with Li6C60. Journal of Physical Chemistry Letters, 2012, 3, 1084-8 Au(CN)n complexes: superhalogens with pseudohalogen as building blocks. Inorganic Chemistry,	2.86.46.4	46 46 46
460 459 458	A recipe for designing molecules with ever-increasing electron affinities. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 1469-74 Strain-Induced Spin Crossover in Phthalocyanine-Based Organometallic Sheets. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 3109-14 Density Functional Theory Study of the Interaction of Hydrogen with Li6C60. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1084-8 Au(CN)n complexes: superhalogens with pseudohalogen as building blocks. <i>Inorganic Chemistry</i> , 2011 , 50, 8918-25 Experimental and theoretical studies on inorganic magic clusters: M4X6 (M=W, Mo, X=O, S).	2.86.46.45.1	46 46 46

454	Origin of the unusual stability of B12 and B13(+) clusters. <i>Inorganic Chemistry</i> , 2009 , 48, 9965-7	5.1	45
453	Caging of Ni clusters by benzene molecules and its effect on the magnetism of Ni clusters. <i>Journal of Chemical Physics</i> , 2002 , 116, 1343-1349	3.9	45
452	Negative Conduction-Electron Contribution to the Field Gradient in Beryllium. <i>Physical Review Letters</i> , 1972 , 29, 456-458	7.4	45
45 ¹	Ferromagnetic and Half-Metallic FeC Monolayer Containing C Dimers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26207-26212	9.5	44
450	SiTe monolayers: Si-based analogues of phosphorene. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6353-6	3 6 11	44
449	Synthesis, Characterization, and Atomistic Modeling of Stabilized Highly Pyrophoric Al(BH4)3 via the Formation of the Hypersalt K[Al(BH4)4]. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 19905-19915	3.8	44
448	Origin of the unusual properties of Au(n)(BO2) clusters. <i>ChemPhysChem</i> , 2010 , 11, 853-8	3.2	44
447	(BAl12)Cs:mA cluster-assembled solid. <i>Physical Review B</i> , 1997 , 55, 15868-15873	3.3	44
446	Dehydrogenation mechanism in catalyst-activated MgH2. Physical Review B, 2006, 74,	3.3	44
445	Effect of Au coating on the magnetic and structural properties of Fe nanoclusters for use in biomedical applications: A density-functional theory study. <i>Physical Review B</i> , 2006 , 73,	3.3	44
444	New insights into carbon dioxide interactions with benzimidazole-linked polymers. <i>Chemical Communications</i> , 2014 , 50, 3571-4	5.8	43
443	Polyol-Mediated Synthesis of Ultrafine TiO2 Nanocrystals and Tailored Physiochemical Properties by Ni Doping. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9210-9217	3.8	43
442	Multidecker Organometallic Complexes for Hydrogen Storage. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6181-6185	3.8	43
441	Multiferroic materials based on organic transition-metal molecular nanowires. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14423-9	16.4	42
440	Potential candidates for hyperhalogens: a comparative study of BO2, AlO2, and VO3 species. Journal of Chemical Physics, 2011 , 135, 144305	3.9	42
439	Electronic structure and bonding of Au on a SiO2 cluster: a nanobullet for tumors. <i>Physical Review Letters</i> , 2004 , 93, 186803	7.4	42
438	Unambiguous assignment of the ground state of a nearly degenerate cluster. <i>Physical Review B</i> , 2000 , 62, 1604-1606	3.3	42
437	Observation of a spin-protected high-energy isomer of Al4NIzluster. <i>Chemical Physics Letters</i> , 1999 , 301, 379-384	2.5	42

436	Organo-Zintl Clusters [P7R4]: A New Class of Superalkalis. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 800-5	6.4	41
435	Structure and properties of Mn4Cl9: an antiferromagnetic binary hyperhalogen. <i>Journal of Chemical Physics</i> , 2013 , 138, 054309	3.9	41
434	Superhalogen properties of CumCln clusters: theory and experiment. <i>Journal of Chemical Physics</i> , 2011 , 135, 244312	3.9	41
433	Electronic structure and transport properties of FeAl alloys. <i>Intermetallics</i> , 2000 , 8, 1197-1207	3.5	41
432	Structure and properties of Ni7 cluster isomers. <i>Chemical Physics Letters</i> , 1996 , 253, 390-396	2.5	41
431	Superhalogen-based lithium superionic conductors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13373-133	383	40
430	Tetragonal C24: a topological nodal-surface semimetal with potential as an anode material for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 5733-5739	13	40
429	Equilibrium geometries, magic numbers and electronic structure of small carbon clusters. <i>Solid State Communications</i> , 1986 , 58, 53-56	1.6	40
428	Electronic structure, magnetic behavior, and stability of Ni-P. <i>Physical Review B</i> , 1987 , 36, 5446-5453	3.3	40
427	Reactivity of hydrogen with open and closed shell clusters. <i>Chemical Physics Letters</i> , 1994 , 218, 383-386	2.5	39
426	Electrical Control of Magnetic Phase Transition in a Type-I Multiferroic Double-Metal Trihalide Monolayer. <i>Physical Review Letters</i> , 2020 , 124, 067602	7.4	38
425	Boosting the Curie Temperature of Two-Dimensional Semiconducting Crl3 Monolayer through van der Waals Heterostructures. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 17987-17993	3.8	38
424	Aromatic superhalogens. <i>Chemistry - A European Journal</i> , 2014 , 20, 4736-45	4.8	38
423	Zn in the +III oxidation state. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8400-3	16.4	38
422	Intrinsic ferromagnetism in two-dimensional carbon structures: Triangular graphene nanoflakes linked by carbon chains. <i>Physical Review B</i> , 2011 , 84,	3.3	38
421	First-principles studies of the geometry and energetics of the Si36 cluster. <i>Physical Review A</i> , 2003 , 67,	2.6	38
42 0	Structure and magnetic properties of Fe-Ni clusters. <i>Physical Review B</i> , 2001 , 64,	3.3	38
419	Self-consistent screening of a positive muon in a spin-polarized electron gas. <i>Physical Review B</i> , 1978 , 17, 301-307	3.3	38

418	A novel strategy for reversible hydrogen storage in Ca(BH4)2. Chemical Communications, 2015, 51, 1100)& . .81	37
417	Electronic structure and properties of isoelectronic magic clusters: Al13X (X=H,Au,Li,Na,K,Rb,Cs). Journal of Chemical Physics, 2010 , 133, 124308	3.9	37
416	Tailoring Li adsorption on graphene. <i>Physical Review B</i> , 2014 , 90,	3.3	36
415	Enhanced Hydrogen Storage on Li Functionalized BC3 Nanotube. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6136-6140	3.8	36
414	Optical resonances in bimetallic clusters and their relation to the electronic structure. <i>Physical Review B</i> , 1992 , 46, 9751-9760	3.3	36
413	The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters. <i>Journal of Chemical Physics</i> , 2014 , 140, 124309	3.9	35
412	First-principles study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures. <i>Physical Review B</i> , 2008 , 77,	3.3	35
411	First-principles study of magnetic properties in V-doped ZnO. <i>Applied Physics Letters</i> , 2007 , 91, 063116	3.4	35
410	Designing New Materials Using Atomic Clusters. <i>Journal of Cluster Science</i> , 1999 , 10, 477-491	3	35
409	Aluminum Zintl anion moieties within sodium aluminum clusters. <i>Journal of Chemical Physics</i> , 2014 , 140, 054301	3.9	34
408	Magnetism in ZnO nanowire with Fe/Co codoping: First-principles density functional calculations. <i>Physical Review B</i> , 2010 , 81,	3.3	34
407	Structure and spectroscopic properties of iron oxides with the high content of oxygen: FeO(n) and FeO(n)(-) (n = 5-12). <i>Journal of Physical Chemistry A</i> , 2010 , 114, 9014-21	2.8	34
406	Quantum size effect on the magnetism of finite systems. <i>Physical Review B</i> , 1990 , 42, 976-979	3.3	34
405	Theory of Hyperfine Properties of Beryllium and Magnesium Metals. <i>Physical Review B</i> , 1970 , 1, 432-447	7 3.3	34
404	High-temperature superconductivity in heavily N- or B-doped graphene. <i>Physical Review B</i> , 2015 , 92,	3.3	33
403	Ligand induced ferromagnetism in ZnO nanostructures. <i>Journal of Chemical Physics</i> , 2008 , 129, 164714	3.9	33
402	Design of Janus nanoparticles with atomic precision: tungsten-doped gold nanostructures. <i>ACS Nano</i> , 2008 , 2, 341-7	16.7	33
401	Effect of Ti and metal vacancies on the electronic structure, stability, and dehydrogenation of Na3AlH6: Supercell band-structure formalism and gradient-corrected density-functional theory. <i>Physical Review B</i> , 2006 , 73,	3.3	33

400	Nitrogen-induced magnetic transition in small chromium clusters. <i>Journal of Chemical Physics</i> , 2003 , 119, 7124-7130	3.9	33
399	Electronic structure and chemical bonding of 3d-metal dimers ScX, X=ScIn. <i>Journal of Chemical Physics</i> , 2001 , 114, 10738-10748	3.9	33
398	Theory of hydrogen pairing in yttrium. <i>Physical Review Letters</i> , 1989 , 63, 1396-1399	7.4	33
397	New Phosphorene Allotropes Containing Ridges with 2- and 4-Coordination. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 24674-24680	3.8	32
396	Superhalogens as building blocks of two-dimensional organic-inorganic hybrid perovskites for optoelectronics applications. <i>Nanoscale</i> , 2016 , 8, 17836-17842	7.7	32
395	Spectroscopy of Nin(benzene)m anion complexes. <i>Journal of Chemical Physics</i> , 2002 , 117, 5234-5239	3.9	32
394	Thermodynamics of small nickel clusters. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, 10853-10862	1.8	32
393	Energetics and electronic structures of hydrogenated metal clusters. <i>Physical Review B</i> , 1991 , 43, 1416-	-134321	32
392	Fragmentation channels and their relationship to magic number studies of microclusters. <i>Solid State Communications</i> , 1986 , 59, 509-512	1.6	32
391	Superhalogens: A Bridge between Complex Metal Hydrides and Li Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1119-25	6.4	31
390	A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. Journal of Materials Chemistry A, 2018 , 6, 13816-13824	13	31
389	Structures of neutral and anionic Au(16) clusters revisited. <i>Journal of Chemical Physics</i> , 2010 , 132, 1943	06 .9	31
388	Magic numbers in supported metal clusters. <i>Physical Review B</i> , 1997 , 56, 6952-6957	3.3	31
387	Oxidation of CO on Fe2O3 model surfaces. Surface Science, 2007 , 601, 4873-4880	1.8	31
386	Relationship between topological and magnetic order in small metal clusters. <i>Physical Review B</i> , 1985 , 32, 477-479	3.3	31
385	Hyperfine-field distribution in Fe3Si1⊠Alx alloys and a theoretical interpretation. <i>Physical Review B</i> , 1979 , 19, 2933-2938	3.3	31
384	Penta-BCN: A New Ternary Pentagonal Monolayer with Intrinsic Piezoelectricity. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3501-3506	6.4	31
383	Tuning electronic and magnetic properties of silicene with magnetic superhalogens. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22979-86	3.6	30

382	Electronic structure and binding energies of hydrogen-decorated vacancies in Ni. <i>Physical Review B</i> , 1997 , 55, 4174-4181	3.3	30
381	DFT study of structure and binding energies of Fe-corannulene complex. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 9220-5	2.8	30
380	Relationship between photoelectron spectroscopy and the magnetic moment of Ni7 clusters. <i>Physical Review B</i> , 2001 , 64,	3.3	30
379	Electron-hole droplets and impurity band states in heavily doped Si(P): Photoluminescence experiments and theory. <i>Physical Review B</i> , 1976 , 14, 1633-1648	3.3	30
378	Positron annihilation in small metal voids. <i>Solid State Communications</i> , 1977 , 21, 293-296	1.6	30
377	Theory of Isotropic and Anisotropic Knight Shifts in Beryllium. <i>Physical Review Letters</i> , 1968 , 20, 544-540	67.4	30
376	Theory of Nuclear Quadrupole Interaction in Nontransition Metals Magnesium. <i>Physical Review B</i> , 1973 , 7, 975-980	3.3	30
375	Electric quadrupole moments and electron affinities of atoms from H to Cl: a coupled-cluster study. <i>Chemical Physics Letters</i> , 1998 , 291, 547-552	2.5	29
374	Clustering of Cr in GaN nanotubes and the onset of ferrimagnetic order. <i>Physical Review B</i> , 2006 , 73,	3.3	29
373	Ground state structures and photoelectron spectroscopy of [Com(coronene)]- complexes. <i>Journal of Chemical Physics</i> , 2007 , 126, 084306	3.9	29
372	Effect of sequential oxidation on the electronic structure of tungsten clusters. <i>Chemical Physics Letters</i> , 2004 , 387, 29-34	2.5	29
371	Sodium Superionic Conductors Based on Clusters. ACS Applied Materials & amp; Interfaces, 2019, 11, 963	-9,752	29
370	A new C=C embedded porphyrin sheet with superior oxygen reduction performance. <i>Nano Research</i> , 2015 , 8, 2901-2912	10	28
369	Nitrate superhalogens as building blocks of hypersalts. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 5428	- 3:4 8	28
368	An all-electron density functional theory study of the structure and properties of the neutral and singly charged M12 and M13 clusters: $M = Sc-Zn$. <i>Journal of Chemical Physics</i> , 2013 , 138, 164303	3.9	28
367	Sc-phthalocyanine sheet: Promising material for hydrogen storage. <i>Applied Physics Letters</i> , 2011 , 99, 163104	3.4	28
366	Positron trapping at defects in copper oxide superconductors. <i>Physical Review B</i> , 1991 , 43, 10422-10430	03.3	28
365	Monoclinic C16: sp-sp hybridized nodal-line semimetal protected by PT-symmetry. <i>Carbon</i> , 2018 , 127, 527-532	10.4	28

364	Complex metal borohydrides: multifunctional materials for energy storage and conversion. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 353001	1.8	27
363	Reaction Intermediates during the Dehydrogenation of Metal Borohydrides: A Cluster Perspective. Journal of Physical Chemistry C, 2010 , 114, 16849-16854	3.8	27
362	First-principles study of magnetism in (112 0) Zn1MMnxO thin film. <i>Applied Physics Letters</i> , 2004 , 84, 4170-4172	3.4	27
361	Anomalous spectroscopy of Li4- clusters. <i>Physical Review Letters</i> , 1996 , 76, 2878-2881	7.4	27
360	Hyperfine field systematics of nonmagnetic ions in ferromagnetic alloys. <i>Journal of Magnetism and Magnetic Materials</i> , 1978 , 8, 99-111	2.8	27
359	Electric-Field Gradient at Cu Nuclei Due to an Interstitial Positive Muon. <i>Physical Review Letters</i> , 1978 , 40, 264-266	7.4	27
358	Superhalogens as Building Blocks of Halogen-Free Electrolytes in Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2014 , 126, 14136-14139	3.6	26
357	Electronic and magnetic properties of manganese and iron atoms decorated with BO2 superhalogens. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 1310-8	2.8	26
356	Communications: Chain and double-ring polymeric structures: Observation of Al(n)H(3n+1) (-) (n=4-8) and Al(4)H(14) (-). <i>Journal of Chemical Physics</i> , 2010 , 132, 241103	3.9	26
355	Origin of the anatase to rutile conversion of metal-doped TiO2. <i>Physical Review B</i> , 2009 , 79,	3.3	26
354	Theoretical Study on Gold-Coated Iron Oxide Nanostructure: Magnetism and Bioselectivity for Amino Acids. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4159-4163	3.8	26
353	Thermodynamical stability of CH3ONO and CH3ONOIA coupled-cluster and HartreeBock-density-functional-theory study. <i>Journal of Chemical Physics</i> , 1999 , 110, 403-411	3.9	26
352	Quantum Phase Transition in Germanene and Stanene Bilayer: From Normal Metal to Topological Insulator. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1919-24	6.4	26
351	Stability and properties of 2D porous nanosheets based on tetraoxa[8]circulene analogues. <i>Nanoscale</i> , 2014 , 6, 14962-70	7.7	25
350	Ferromagnetism in Al1\(\mathbb{R}\)CrxN thin films by density functional calculations. <i>Physical Review B</i> , 2006 , 73,	3.3	25
349	Theory of Electric Field Gradient Due to a Point Defect in a Cubic Metal. <i>Physical Review Letters</i> , 1981 , 46, 610-614	7.4	25
348	Bloch enhancement of the nuclear quadrupole interaction in aluminium alloys. <i>Journal of Physics F: Metal Physics</i> , 1975 , 5, 1649-1662		25
347	B12(SCN)12EAn Ultrastable Weakly Coordinating Dianion. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 7697-7702	3.8	24

(2017-2009)

346	N-doped ZnO thin films and nanowires: energetics, impurity distribution and magnetism. <i>New Journal of Physics</i> , 2009 , 11, 063035	2.9	24	
345	Thermal stability of supported metal clusters. <i>Physical Review B</i> , 1993 , 48, 8263-8266	3.3	24	
344	Organic superhalogens. <i>ChemPhysChem</i> , 2014 , 15, 2903-8	3.2	23	
343	Origin of the anomalous magnetic behavior of the Fe13+ cluster. <i>Physical Review B</i> , 2012 , 86,	3.3	23	
342	First-principles study of hydrogen adsorption in metal-doped COF-10. <i>Journal of Chemical Physics</i> , 2010 , 133, 154706	3.9	23	
341	Magnetic bistability of supported Mn clusters. <i>Surface Science</i> , 1997 , 384, L892-L895	1.8	23	
340	Dehydrogenation from 3d-transition-metal-doped NaAlH4: Prediction of catalysts. <i>Applied Physics Letters</i> , 2007 , 90, 141904	3.4	23	
339	Atomic structure, binding energy, and magnetic properties of iron atoms supported on a polyaromatic hydrocarbon. <i>Journal of Chemical Physics</i> , 2003 , 118, 8671-8680	3.9	23	
338	Evolution of the electronic structure of Be clusters. <i>Journal of Chemical Physics</i> , 2005 , 123, 074329	3.9	23	
337	Dynamics and instabilities near the glass transition: From clusters to crystals. <i>Journal of Chemical Physics</i> , 1998 , 108, 234-239	3.9	23	
336	Search for quadrupole-bound@nions. I. <i>Journal of Chemical Physics</i> , 1999 , 111, 504-511	3.9	23	
335	Electronic structure of LiBeH3. <i>Physical Review B</i> , 1988 , 38, 2380-2387	3.3	23	
334	Structural properties of microcrystallites. <i>Physical Review B</i> , 1984 , 30, 7293-7296	3.3	23	
333	Isotope Effect on the Electronic Spin Density in PdH Superconductor. <i>Physical Review Letters</i> , 1978 , 40, 578-581	7.4	23	
332	Like Charges Attract?. Journal of Physical Chemistry Letters, 2016, 7, 2689-95	6.4	23	
331	Unusual Magnetic Properties of Functionalized Graphene Nanoribbons. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2482-2488	6.4	22	
330	Competition between surface chemisorption and cage formation in Fe12O12 clusters. <i>Chemical Physics Letters</i> , 2013 , 556, 211-216	2.5	22	
329	Valley-Polarized Quantum Anomalous Hall Effect in Ferrimagnetic Honeycomb Lattices. <i>Physical Review Letters</i> , 2017 , 119, 046403	7.4	22	

328	Thermal stability and structural transition in Be microclusters. <i>Physical Review B</i> , 1992 , 46, 7841-7845	3.3	22
327	Theory of spin polarization around an interstitial positive muon in ferromagnetic materials. <i>Solid State Communications</i> , 1976 , 19, 45-48	1.6	22
326	Rational Design of Porous Nodal-Line Semimetallic Carbon for K-Ion Battery Anode Materials. Journal of Physical Chemistry Letters, 2019 , 10, 6360-6367	6.4	21
325	Structure, Stability, and Property Modulations of Stoichiometric Graphene Oxide. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 1064-1070	3.8	21
324	Density functional study of neutral and anionic AlO(n) and ScO(n) with high oxygen content. Journal of Computational Chemistry, 2011 , 32, 2974-82	3.5	21
323	Theoretical study of C60 as catalyst for dehydrogenation in LiBH4. <i>Nanotechnology</i> , 2011 , 22, 335401	3.4	21
322	Unique magnetic coupling between Mn doped stannaspherenes Mn@Sn12. <i>Applied Physics Letters</i> , 2008 , 92, 143109	3.4	21
321	Hydrogen Storage in Organometallic Structures Grafted on Silsesquioxanes. <i>Chemistry of Materials</i> , 2007 , 19, 3074-3078	9.6	21
320	Optically induced magnetism in cobalt iron cyanide. <i>Physical Review B</i> , 1998 , 58, 14131-14134	3.3	21
319	Reverse isotope effect on the superconductivity of PdH, PdD, and PdT. <i>Solid State Communications</i> , 1995 , 94, 549-553	1.6	21
318	Assembling Crystals from Clusters. <i>Physical Review Letters</i> , 1993 , 71, 208-208	7.4	21
317	Magnetism of Al-Mn quasicrystals. <i>Physical Review B</i> , 1993 , 48, 1295-1298	3.3	21
316	Positron annihilation in helium- and krypton-decorated microvoids in fcc metals. <i>Physical Review B</i> , 1985 , 31, 5634-5641	3.3	21
315	Positron annihilation in metal-vacancyBydrogen complexes. <i>Physical Review B</i> , 1981 , 24, 2884-2887	3.3	21
314	Self-consistent determination of Hubbard U for explaining the anomalous magnetism of the Gd13 cluster. <i>Physical Review B</i> , 2014 , 89,	3.3	20
313	Structural Patterns in Carbon Chemisorption on an Icosahedral 2 Iron Cluster. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 7050-7061	3.8	20
312	Interactions of a Mn atom with halogen atoms and stability of its half-filled 3d-shell. <i>Journal of Chemical Physics</i> , 2011 , 134, 234311	3.9	20
311	Al13H-: hydrogen atom site selectivity and the shell model. <i>Journal of Chemical Physics</i> , 2009 , 131, 1217	10339	20

310	Chemisorption of atomic and molecular oxygen on Au and Ag cluster anions: discrimination of different isomers. <i>Chemical Physics Letters</i> , 2004 , 396, 69-74	2.5	20
309	Hole trapping in LixNi1-xO. <i>Journal of Physics Condensed Matter</i> , 1990 , 2, 10371-10377	1.8	20
308	Hydrogen and deuterium decoration of In-vacancy complexes in nickel. <i>Physical Review B</i> , 1987 , 35, 605	9369063	3 20
307	Electronically induced trapping of hydrogen by impurities in niobium. <i>Physical Review B</i> , 1984 , 30, 1065-	1,0,68	20
306	Electronic structure of hydrogen-like impurities in nearly-free-electron metals. <i>Hyperfine Interactions</i> , 1979 , 6, 5-14	0.8	20
305	Nonlinear electron-density distribution around point defects in simple metals. I. Formulation. <i>Physical Review B</i> , 1978 , 18, 2712-2722	3.3	20
304	Electronic and Nuclear-Magnetic-Resonance Properties of the Liquid Metals. <i>Physical Review B</i> , 1972 , 6, 2131-2138	3.3	20
303	Cluster-Inspired Design of High-Capacity Anode for Li-Ion Batteries. ACS Energy Letters, 2016, 1, 202-203	820.1	19
302	Alanate anion, AlH4(-): photoelectron spectrum and computations. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 8158-62	2.8	19
301	Unique Spectroscopic Signature of Nearly Degenerate Isomers of Au(CN)3 Anion. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 3027-3031	6.4	19
300	Isomerism of Ni cluster anions and its role on photo-detachment spectroscopy. <i>Chemical Physics Letters</i> , 1997 , 281, 401-406	2.5	19
299	Photoelectron spectroscopic and theoretical studies of Fe(m)-(coronene)n (m=1,2, n=1,2) complexes. <i>Journal of Chemical Physics</i> , 2008 , 129, 074313	3.9	19
298	Interaction of gas molecules with Ti-benzene complexes. Journal of Chemical Physics, 2008, 129, 074305	3.9	19
297	Dilute magnetic IIIIV semiconductor spintronics materials: A first-principles approach. <i>Computational Materials Science</i> , 2006 , 36, 84-90	3.2	19
296	Ab initio study of ferromagnetism in Ga1⊠CrxN thin films. <i>Physical Review B</i> , 2005 , 72,	3.3	19
295	Structural isomerism of niobium clusters and its role on reactivity. <i>Chemical Physics Letters</i> , 1996 , 259, 588-592	2.5	19
294	Structural and electronic properties of compound metal clusters. <i>Zeitschrift Fil Physik D-Atoms Molecules and Clusters</i> , 1986 , 3, 219-222		19
293	Electronically driven magnetic transition and dimensionality crossover in Li4 clusters. <i>Chemical Physics Letters</i> , 1985 , 121, 202-204	2.5	19

292	Effect of Core Polarization on Knight Shift and Relaxation Time in Metallic Cadmium. <i>Physical Review B</i> , 1970 , 1, 1160-1165	3.3	19
291	Stability of B12(CN)122[Implications for Lithium and Magnesium Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 3768-3772	3.6	19
290	Pressure-induced magnetic crossover driven by hydrogen bonding in CuF(HD)(B-chloropyridine). <i>Scientific Reports</i> , 2014 , 4, 6054	4.9	18
289	Functionalized boranes for hydrogen storage. <i>ChemPhysChem</i> , 2012 , 13, 300-4	3.2	18
288	Structure, stability and superhalogen properties of sodium and magnesium borohydrides. <i>Chemical Physics Letters</i> , 2013 , 556, 173-177	2.5	18
287	Super and hyperhalogen behavior in MgX n and GdX n (X = F, BF4) clusters. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	18
286	Magnetism of free and supported vanadium clusters. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 107	3 9. 807	′48 8
285	Ab initio study of electronic and magnetic properties of the C-codoped Ga1\(\mathbb{\text{M}}\)MnxN (101\(\mathbb{\text{D}}\)) surface. <i>Physical Review B</i> , 2007 , 75,	3.3	18
284	Comment on "Fully coordinated silica nanoclusters: (SiO2)N molecular rings". <i>Physical Review Letters</i> , 2004 , 92, 039601; author reply 039602	7.4	18
283	Photodecomposition of MnO4-: A Theoretical Study. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 10819-	10:872.4	18
282	Molecular view of the interfacial adhesion in aluminum-silicon carbide metal-matrix composites. <i>Applied Physics Letters</i> , 1990 , 57, 2308-2310	3.4	18
281	Modelling of metal clusters as fragments of crystalline solids. <i>Journal of Physics F: Metal Physics</i> , 1986 , 16, 461-472		18
280	Heat of solution of hydrogen in Al and Mg. <i>Physical Review B</i> , 1978 , 17, 1592-1595	3.3	18
279	Discovery of twin orbital-order phases in ferromagnetic semiconducting VI monolayer. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 512-517	3.6	18
278	Role of ligands in the stability of BX and CBX ($n = 5-10$; $X = H$, F, CN) and their potential as building blocks of electrolytes in lithium ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 17937-1794	43 ^{3.6}	17
277	N-doped peanut-shaped carbon nanotubes for efficient CO2 electrocatalytic reduction. <i>Carbon</i> , 2019 , 152, 241-246	10.4	17
276	Giant Valley Splitting and Valley Polarized Plasmonics in Group V Transition-Metal Dichalcogenide Monolayers. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5764-5770	6.4	17
275	Porphyrin-based porous sheet: Optoelectronic properties and hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 3689-3696	6.7	17

(2020-2012)

274	Magnetism of two-dimensional triangular nanoflake-based kagome lattices. <i>New Journal of Physics</i> , 2012 , 14, 033043	2.9	17	
273	Distribution of electric field gradients around impurities in aluminum. <i>Hyperfine Interactions</i> , 1984 , 20, 65-117	0.8	17	
272	Role of elastic and electronic interactions in trapping of hydrogen by impurities in transition metals. <i>Physical Review B</i> , 1985 , 31, 7612-7616	3.3	17	
271	Nonlinear electron-density distribution around point defects in simple metals. II. Applications. <i>Physical Review B</i> , 1978 , 18, 2723-2732	3.3	17	
270	Theory of Hyperfine Properties of Liquid Metals [Application to Cadmium. <i>Physical Review B</i> , 1971 , 3, 2158-2168	3.3	17	
269	Conserved Vibrational Coherence in the Ultrafast Rearrangement of 2-Nitrotoluene Radical Cation. Journal of Physical Chemistry A, 2019 , 123, 1140-1152	2.8	16	
268	Structure and Properties of Egyptian Blue Monolayer Family: XCuSi4O10 (X = Ca, Sr, and Ba). <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 399-405	6.4	16	
267	Evolution of superhalogen properties in PtCl(n) clusters. <i>Journal of Chemical Physics</i> , 2012 , 136, 194305	3.9	16	
266	Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior. <i>Chemical Physics Letters</i> , 2010 , 498, 56-62	2.5	16	
265	Signature of crystalline order in ultra-small metal-oxide clusters. <i>Chemical Physics Letters</i> , 1998 , 288, 253-260	2.5	16	
264	Magnetic moment and photo-detachment spectroscopy of Ni5 clusters. <i>Chemical Physics Letters</i> , 2001 , 336, 467-472	2.5	16	
263	Structure and magnetic ordering in Cr8 and Cr13 clusters. <i>Physical Review B</i> , 1999 , 60, 15597-15600	3.3	16	
262	Physics of cluster assembled materials. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1996 , 217-218, 218-222	5.3	16	
261	DESIGNING CLUSTERS AS SUPERELEMENTS. Surface Review and Letters, 1996 , 03, 993-999	1.1	16	
2 60	Charge-state stability of Ni and Cu impurities in MgO. <i>Physical Review B</i> , 1990 , 42, 1156-1162	3.3	16	
259	Effect of zero-point motion on the superconducting transition temperature of PdH(D). <i>Physical Review B</i> , 1984 , 29, 4140-4143	3.3	16	
258	Magnetic hyperfine structure of 125Te in ferromagnetic Pd2MnSb. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1975 , 54, 293-294	2.3	16	
257	Yttrium-Sodium Halides as Promising Solid-State Electrolytes with High Ionic Conductivity and Stability for Na-Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3376-3383	6.4	16	

256	Atomic Clusters: Opportunities in the Face of Challenges. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1549-52	6.4	15
255	Colossal Stability of Gas-Phase Trianions: Super-Pnictogens. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13421-13425	16.4	15
254	Giant magnetocrystalline anisotropy of 5d transition metal-based phthalocyanine sheet. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 17182-9	3.6	15
253	Intermediate Phases during Decomposition of Metal Borohydrides, M(BH4)n (M = Na, Mg, Y). Journal of Physical Chemistry C, 2014 , 118, 28456-28461	3.8	15
252	Ti-doped nano-porous graphene: A material for hydrogen storage and sensor. <i>Frontiers of Physics</i> , 2011 , 6, 204-208	3.7	15
251	Anisotropy and Transport Properties of Tubular C-BN Janus Nanostructures. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 23978-23983	3.8	15
250	Mg-doped GaN nanostructures: Energetics, magnetism, and H2 adsorption. <i>Applied Physics Letters</i> , 2009 , 94, 013108	3.4	15
249	Electronic structure of light metal hydrides. <i>Physical Review B</i> , 1997 , 55, 1454-1458	3.3	15
248	First-principles study of ferromagnetic coupling in Zn1\(\mathbb{U}\)CrxTe thin film. <i>Journal of Applied Physics</i> , 2005 , 97, 043904	2.5	15
247	Electronic Shell Structure and the Crystal Field Splitting in Simple Metals Clusters. <i>Europhysics Letters</i> , 1991 , 14, 643-648	1.6	15
246	Band structures of solids composed of metal clusters. Solid State Communications, 1993, 85, 11-14	1.6	15
245	Comment on "Charge exchange and metastability of small multiply charged gold clusters". <i>Physical Review Letters</i> , 1990 , 64, 1188	7.4	15
244	Effect of zero point motion on the hyperfine field at an interstitial positive muon site in ferromagnetic Ni. <i>Solid State Communications</i> , 1979 , 31, 1003-1007	1.6	15
243	Role of Effective Mass in Interpreting the Knight Shift in Cadmium upon Melting. <i>Physical Review Letters</i> , 1971 , 26, 1024-1027	7.4	15
242	A Theoretical and Mass Spectrometry Study of Dimethyl Methylphosphonate: New Isomers and Cation Decay Channels in an Intense Femtosecond Laser Field. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 8414-8424	2.8	14
241	Unusual stability of multiply charged organo-metallic complexes. <i>RSC Advances</i> , 2015 , 5, 44003-44008	3.7	14
240	Hydrogenated C60 as High-Capacity Stable Anode Materials for Li Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6453-6460	6.1	14
239	Lattice Dynamic and Instability in Pentasilicene: A Light Single-Element Ferroelectric Material With High Curie Temperature. <i>Physical Review Applied</i> , 2019 , 11,	4.3	14

(2004-2013)

238	Anomalous property of Ag(BO2)2 hyperhalogen: does spin-orbit coupling matter?. <i>ChemPhysChem</i> , 2013 , 14, 3303-8	3.2	14
237	On the structural and energetic properties of the hydrogen absorber Li2Mg(NH)2. <i>Applied Physics Letters</i> , 2007 , 91, 091924	3.4	14
236	Metastability of a gold nanoring: Density-functional calculations. <i>Physical Review B</i> , 2004 , 70,	3.3	14
235	Magnetic excitations of Co2 dimer. <i>Chemical Physics Letters</i> , 2001 , 345, 481-489	2.5	14
234	Electronic structure of the LiMgH3 class of compounds: Cluster calculations. <i>Physical Review B</i> , 1991 , 44, 6030-6036	3.3	14
233	Screening of a Positive Muon by a Semion Gas. <i>International Journal of Modern Physics B</i> , 1991 , 05, 1579	-1 <u>5</u> 88	14
232	Jahn-Teller Distortion, Hund⊠ Coupling and Metastability in Alkali Tetramers 1987 , 435-438		14
231	Atomic relaxations around vacancy clusters in molybdenum and their effects on trapped-positron lifetime. <i>Physical Review B</i> , 1988 , 37, 6-11	3.3	14
230	Dissociation dynamics of 3- and 4-nitrotoluene radical cations: Coherently driven C-NO bond homolysis. <i>Journal of Chemical Physics</i> , 2018 , 148, 134305	3.9	13
229	Electron affinity of modified benzene. International Journal of Quantum Chemistry, 2018, 118, e25504	2.1	13
228	Role of Ti-based catalysts in the dehydrogenation mechanism of magnesium borohydride: A cluster approach. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 2357-2362	6.7	13
227	Mass spectrometry and its role in advancing cluster science. <i>International Journal of Mass Spectrometry</i> , 2015 , 377, 235-247	1.9	13
226	Stability and spectroscopic properties of singly and doubly charged anions. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 5604-17	2.8	13
225	Pressure-induced local structure distortions in Cu(pyz)F2(H2O)2. <i>Inorganic Chemistry</i> , 2011 , 50, 6347-52	5.1	13
224	Stability and electronic structure of bilayer graphone. <i>Applied Physics Letters</i> , 2011 , 98, 063108	3.4	13
223	Hyperhalogene: eine neue Klasse stark elektronegativer Verbindungen. <i>Angewandte Chemie</i> , 2010 , 122, 9150-9154	3.6	13
222	Li- and B-decorated cis-polyacetylene: A computational study. <i>Physical Review B</i> , 2008 , 77,	3.3	13
221	Soft breakdown of an insulating nanowire in an electric field. <i>Nanotechnology</i> , 2004 , 15, 260-263	3.4	13

220	Interaction of magic gold cluster with Si(_mathsf{60}) cage. European Physical Journal D, 2004, 29, 231-7	2343	13
219	Design of a heterostructure peapod using magic silicon clusters. <i>Physical Review B</i> , 2002 , 66,	3.3	13
218	Clusters A new phase of matter. <i>Phase Transitions</i> , 1990 , 24-26, 35-60	1.3	13
217	Volume dependence of the magnetic properties of alkali metals. <i>Journal of Physics F: Metal Physics</i> , 1980 , 10, 1567-1573		13
216	Interpenetrating silicene networks: A topological nodal-line semimetal with potential as an anode material for sodium ion batteries. <i>Physical Review Materials</i> , 2018 , 2,	3.2	13
215	Stable Tetra- and Penta-Anions in the Gas Phase. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11248-11252	16.4	12
214	Structure and Properties of Polyfluoride Fn(-) Clusters (n = 3-29). <i>Journal of Physical Chemistry A</i> , 2015 , 119, 6483-92	2.8	12
213	Chemically induced changes in the magnetic moments in transition metal monomers and dimers. <i>Chemical Physics Letters</i> , 1998 , 295, 175-180	2.5	12
212	Spectroscopic signature of magnetic bistability in Mn2OIanions and its implications for piezomagnetism at the nanoscale. <i>Physical Review B</i> , 2004 , 69,	3.3	12
211	Simple theory of electronic structure: Clusters to crystals. <i>Physical Review B</i> , 1988 , 38, 5760-5763	3.3	12
210	Temperature dependence of impurity resistivity due to hydrogen in metals. <i>Solid State Communications</i> , 1980 , 34, 179-182	1.6	12
209	Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film. <i>Nanoscale</i> , 2016 , 8, 11202-9	7.7	12
208	Tuning magnetic properties of antiferromagnetic chains by exchange interactions: ab initio studies. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 26302-6	3.6	11
207	A 3D porous honeycomb carbon as Na-ion battery anode material with high capacity, excellent rate performance, and robust stability. <i>Carbon</i> , 2020 , 168, 163-168	10.4	11
206	Co-mixing hydrogen and methane may double the energy storage capacity. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8916-8922	13	11
205	Identification of hyperhalogens in Ag(n)(BO2)(m) (n = 1-3, m = 1-2) clusters: anion photoelectron spectroscopy and density functional calculations. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26067-7	74 ^{2.6}	11
204	Origin of Red Shift in the Photoabsorption Peak in MEHPPV Polymer. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 13444-13450	3.8	11
203	Electronic Structure and Stability of Mono- and Bimetallic Borohydrides and Their Underlying Hydrogen-Storage Properties: A Cluster Study. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 11056-11061	3.8	11

202	Reaction-induced magnetic transition in Mn2 dimers. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 549-55	2.8	11
201	Ferromagnetism in Two-Dimensional Carbon Chains Linked by 1,3,5-Benzenetriyl Units. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19621-19625	3.8	11
200	Photoelectron spectroscopy and theoretical studies of [Co(m)(pyrene)(n)]- (m = 1,2 and n = 1,2) complexes. <i>Journal of Chemical Physics</i> , 2008 , 129, 134308	3.9	11
199	Electronic structure of sub-stoichiometric iron aluminide clusters. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 8363-8374	1.8	11
198	Theoretical study of the geometry of Mn5. International Journal of Quantum Chemistry, 1988, 34, 231-23	3 6 .1	11
197	Electron-hole liquid in heavily doped n-type ge and si. <i>Journal of Physics C: Solid State Physics</i> , 1975 , 8, 1377-1386		11
196	On the X-ray edge anomalies in Li. Journal of Physics F: Metal Physics, 1974, 4, L219-L222		11
195	Superhalogens beget superhalogens: a case study of (BO2)n oligomers. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 26589-93	3.6	10
194	Self-assembly of metal atoms (Na, K, Ca) on graphene. <i>Nanoscale</i> , 2015 , 7, 2352-9	7.7	10
193	Ultrafast coherent vibrational dynamics in dimethyl methylphosphonate radical cation. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4636-4640	3.6	10
192	Bipolar Magnetic Materials Based on 2D Ni[TCNE] Metal©rganic Coordination Networks. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700323	6.4	10
191	From Halogen to Superhalogen Behavior of Organic Molecules Created by Functionalizing Benzene. <i>ChemPhysChem</i> , 2016 , 17, 184-9	3.2	10
190	Atomic-Level Design of Water-Resistant Hybrid Perovskites for Solar Cells by Using Cluster Ions. Journal of Physical Chemistry Letters, 2017 , 8, 3726-3733	6.4	10
189	Double exchange mediated ferromagnetic coupling between Co atoms in dicobalt complex. <i>Applied Physics Letters</i> , 2011 , 99, 153105	3.4	10
188	Molecular cluster calculations of the electronic structure of lithium hydride. <i>Journal of Physics C: Solid State Physics</i> , 1986 , 19, 5167-5172		10
187	Effect of Symmetry Breaking on Hydrogen Site Preference in Small Metal Clusters. <i>Physical Review Letters</i> , 1984 , 53, 2300-2303	7.4	10
186	Knight-Shift Calculations in Liquid Magnesium. <i>Physical Review B</i> , 1971 , 4, 711-717	3.3	10
185	Super-alkalis as building blocks of one-dimensional hierarchical electrides. <i>Nanoscale</i> , 2018 , 10, 22963-2		10

184	Superhalogens as Building Blocks of Super Lewis Acids. <i>ChemPhysChem</i> , 2019 , 20, 1607-1612	3.2	9
183	Investigation of hydrogen induced fluorescence in C and its potential use in luminescence down shifting applications. <i>Nanoscale</i> , 2016 , 8, 18760-18770	7.7	9
182	Doping induced magnetic transition in Mn-based molecular systems. <i>Chemical Physics Letters</i> , 2012 , 525-526, 97-100	2.5	9
181	Design of new metal-free dyes for dye-sensitized solar cells: A first-principles study. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2012 , 376, 2595-2599	2.3	9
180	Introduction to Atomic Clusters. <i>Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems</i> , 2010 , 1-36		9
179	Ferromagnetic to ferrimagnetic crossover in Cr-doped GaN nanohole arrays. <i>Physical Review B</i> , 2007 , 75,	3.3	9
178	Limitation on the success of the jellium model for metal clusters. <i>Chemical Physics Letters</i> , 1991 , 183, 333-336	2.5	9
177	Conduction-electron polarization in intermetallic actinide compounds. <i>Physical Review B</i> , 1978 , 18, 3562	2-3 5 67	9
176	Temperature Dependence of Hard-Sphere Interference Functions. <i>Journal of Chemical Physics</i> , 1972 , 57, 1830-1837	3.9	9
175	Basic Research Needs for the Hydrogen Economy. Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use, May 13-15, 2003		9
174	Two-dimensional topological crystalline quantum spin Hall effect in transition metal intercalated compounds. <i>Physical Review B</i> , 2017 , 95,	3.3	8
173	Effect of hydrogenation on the structure and magnetic properties of an iron oxide cluster. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4546-4553	3.6	8
172	All-metal clusters that mimic the chemistry of halogens. <i>ChemPhysChem</i> , 2013 , 14, 3227-32	3.2	8
171	Hydrogen mimicking the properties of coinage metal atoms in Cu and Ag monohydride clusters. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 21007-15	3.6	8
170	Communication: In search of four-atom chiral metal clusters. <i>Journal of Chemical Physics</i> , 2013 , 139, 111	30 91	8
169	Dehydrogenation associated with Ti catalyst in sodium alanate. <i>Journal of Physics and Chemistry of Solids</i> , 2010 , 71, 1073-1076	3.9	8
168	Two thermodynamically stable states in SiODand PNDPhysical Review A, 1998, 58, 4972-4974	2.6	8
167	The origin of anomalous bond dissociation energies of V+ (H2)n clusters. <i>Chemical Physics Letters</i> , 1994 , 230, 299-305	2.5	8

166	Charge-exchange reactions in metal clusters: Role of magic numbers. <i>Physical Review B</i> , 1989 , 40, 966-9	69 3	8
165	Nature of short range interaction between deuterium atoms in Pd. <i>Solid State Communications</i> , 1989 , 72, 891-894	1.6	8
164	Electron localization in anionic and cationic clusters. <i>International Journal of Quantum Chemistry</i> , 1988 , 34, 287-296	2.1	8
163	Equilibrium geometries of small metal clusters and their relationship to crystalline structure. <i>Solid State Communications</i> , 1985 , 56, 731-734	1.6	8
162	Nuclear quadrupole interaction due to point defects in aluminum: Effect of host lattice structure. <i>Physical Review B</i> , 1985 , 31, 5680-5686	3.3	8
161	Assembling SiBN nanoribbons into a 3D porous structure as a universal anode material for both Liand Na-ion batteries with high performance. <i>Nanoscale</i> , 2020 , 12, 19367-19374	7.7	8
160	A family of ionic supersalts with covalent-like directionality and unconventional multiferroicity. <i>Nature Communications</i> , 2021 , 12, 1331	17.4	8
159	Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. <i>Joule</i> , 2022 , 6, 543-587	27.8	8
158	A metallic peanut-shaped carbon nanotube and its potential for CO2 capture. <i>Carbon</i> , 2018 , 132, 249-25	5 6 0.4	7
157	Anisotropic Mo2-phthalocyanine sheet: a new member of the organometallic family. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 304-7	2.8	7
156	18-Electron rule inspired Zintl-like ions composed of all transition metals. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 20241-7	3.6	7
155	Manganese-Based Magnetic Superhalogens. <i>Angewandte Chemie</i> , 2011 , 123, 2616-2620	3.6	7
154	Binding of Butadiene Molecules Mediated by Ni Atom and Ni+ Ion. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 5234-5241	2.8	7
153	Geometry and energetics of Si60 isomers. Science and Technology of Advanced Materials, 2003, 4, 361-36	55.1	7
152	Charge densities, interionic potentials and phonon frequencies in Al. <i>Journal of Physics F: Metal Physics</i> , 1984 , 14, 2017-2025		7
151	Positron annihilation as a probe for impurities trapped by vacancy clusters. <i>Physical Review B</i> , 1982 , 26, 5264-5267	3.3	7
150	Momentum of a fast particle in a dissipative medium with an excitation threshold. <i>Journal of Physics C: Solid State Physics</i> , 1976 , 9, 975-989		7
149	On the feasibility of using positive muons as probes of defect structure. <i>Solid State Communications</i> , 1978 , 27, 1249-1253	1.6	7

148	I129 magnetic hyperfine structure in the Heusler alloys Pd2MnSb and PdMnSb. <i>Physical Review B</i> , 1978 , 18, 3393-3399	3.3	7
147	Potential of porous nodal-line semi-metallic carbon for sodium-ion battery anode. <i>Journal of Power Sources</i> , 2020 , 478, 228746	8.9	7
146	Antiperovskite KOI for K-Ion Solid State Electrolyte. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 7120	067.4126	7
145	Heavily Tungsten-Doped Sodium Thioantimonate Solid-State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26158-26166	16.4	7
144	Robustness of Superatoms and Their Potential as Building Blocks of Materials: Al13 (s B(CN)4 (Journal of Physical Chemistry C, 2020 , 124, 6435-6440	3.8	6
143	Magnetic hollow cages with colossal moments. <i>Journal of Chemical Physics</i> , 2013 , 139, 044301	3.9	6
142	Colossal Stability of Gas-Phase Trianions: Super-Pnictogens. <i>Angewandte Chemie</i> , 2017 , 129, 13606-136	19 .6	6
141	Geometry, Electronic Properties, and Hydrogen Adsorption Properties of Li3N-Based Nanostructures. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19202-19205	3.8	6
140	Photoelectron spectroscopic study of iron-pyrene cluster anions. <i>Journal of Chemical Physics</i> , 2011 , 135, 204301	3.9	6
139	Clusters-A New Source for Atomically Engineered Materials. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 206, 3		6
138	Reaction-induced excitations of clusters. <i>Chemical Physics Letters</i> , 1990 , 171, 439-442	2.5	6
137	Effect of crystal potential on electric field gradient calculations due to impurities in cubic metals. <i>Solid State Communications</i> , 1984 , 52, 411-415	1.6	6
136	Pseudopotential Calculation of the Knight Shift and Relaxation Time in Magnesium. <i>Physical Review B</i> , 1970 , 2, 2264-2267	3.3	6
135	Record-high stability and compactness of multiply-charged clusters aided by selected terminal groups. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 4880-4883	3.6	6
134	Interfacial properties of penta-graphene-metal contacts. <i>Journal of Applied Physics</i> , 2019 , 125, 065308	2.5	6
133	Theory-Guided Discovery of Novel Materials. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 6499-6513	6.4	6
132	Ligand stabilization of manganocene dianions - in defiance of the 18-electron rule. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 24300-24307	3.6	5
131	A high-pressure induced stable phase of Li2MnSiO4 as an effective poly-anion cathode material from simulations. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16406-16413	13	5

(2018-2019)

130	Rational Design of Stable Dianions and the Concept of Super-Chalcogens. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 5753-5761	2.8	5	
129	Pressure-induced structural transition in copper pyrazine dinitrate and implications for quantum magnetism. <i>Physical Review B</i> , 2016 , 93,	3.3	5	
128	Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	5	
127	Giant magnetic moments of B and C doped cuboctahedral Mn13 clusters. <i>Nanoscale</i> , 2013 , 5, 2114-7	7.7	5	
126	Adsorption of oxygen-containing functional groups on free and supported graphene using point contact. <i>Physical Review B</i> , 2012 , 85,	3.3	5	
125	Self-consistent calculation of hyperfine fields at impurity sites in ferromagnetic host. <i>Physical Review B</i> , 1980 , 22, 2411-2419	3.3	5	
124	Ab initio calculation of the temperature dependence of the electric field gradient in Be. <i>Physical Review B</i> , 1981 , 23, 3823-3827	3.3	5	
123	Temperature dependence of electric field gradient and Knight shift in Mg. <i>Physical Review B</i> , 1978 , 17, 1046-1051	3.3	5	
122	Exchange Core-Polarization Contribution to the Spin Density in Liquid Metals. <i>Physical Review B</i> , 1971 , 4, 2385-2392	3.3	5	
121	Physics of Clusters and Cluster Assemblies. <i>Springer Series in Cluster Physics</i> , 1999 , 27-53		5	
120	Electronic Structure of Point Defects in Metals. <i>Treatise on Materials Science and Technology</i> , 1981 , 21, 351-425		5	
119	OrganoZintl-based superatoms: [Ge9(CHO)3] and [Ge9(CHO)]. Chemical Physics Letters, 2017, 686, 195-	-2025	5	
118	Strain and carrier-induced coexistence of topologically insulating and superconducting phase in iodized Si(111) films. <i>Nano Research</i> , 2016 , 9, 1578-1589	10	5	
117	Valley contrasting in epitaxial growth of In/Tl homoatomic monolayer with anomalous Nernst conductance. <i>Physical Review B</i> , 2016 , 94,	3.3	5	
116	B(SCN)4[A New Weakly Coordinating Anion in the Tetracyanoborate Family. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13371-13375	3.8	5	
115	Effect of Coulomb Correlation on the Magnetic Properties of Mn Clusters. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 4350-4356	2.8	4	
114	Assembling EConjugated Molecules with Negative Gaussian Curvature for Efficient Carbon-Based Metal-Free Thermoelectric Material. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27829-27833	3.8	4	
113	Discovery of a high-pressure phase of rutile-like CoO2 and its potential as a cathode material. Journal of Materials Chemistry A, 2018 , 6, 18449-18457	13	4	

112	Mechanochemically driven nonequilibrium processes in MNH2[CaH2 systems (M=Li or Na). <i>Journal of Alloys and Compounds</i> , 2010 , 506, 224-230	5.7	4
111	First-principles study of the effect of vacancies on magnetic properties of Zn1 - xCoxO thin films. Journal of Physics Condensed Matter, 2010 , 22, 076002	1.8	4
110	Tuning magnetic properties of Mn(4) cluster with gold coating. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 1493-6	3.6	4
109	C60-mediated hydrogen desorption in Li-N-H systems. <i>Nanotechnology</i> , 2012 , 23, 485406	3.4	4
108	The Role of Interface on the Properties of Cluster Assemblies. <i>Journal of Cluster Science</i> , 2001 , 12, 443-	4§6	4
107	Effect of atomic relaxation on the magnetic moment of Fe, Co, and Ni dimers supported on Cu(001). <i>Surface Science</i> , 2001 , 491, 219-225	1.8	4
106	Interplanar relaxation at the (0001) surface of Be. Surface Science, 1993, 289, L614-L616	1.8	4
105	Stability of clusters in two dimensions. <i>Physical Review B</i> , 1993 , 48, 14702-14705	3.3	4
104	Magnetic properties of transition metal superlattices. <i>Journal of Magnetism and Magnetic Materials</i> , 1994 , 130, 255-260	2.8	4
103	Theory of hydrogen pairing in metals. <i>Journal of the Less Common Metals</i> , 1991 , 172-174, 485-495		4
102	Geometries and binding energies of small beryllium clusters using various levels of approximations for exchange and correlation: a comparative study. <i>Zeitschrift Fil Physik D-Atoms Molecules and Clusters</i> , 1991 , 18, 171-174		4
101	Comment on "Patterns and barriers for fission of charged small metal clusters". <i>Physical Review Letters</i> , 1992 , 69, 1471	7.4	4
100	Self-consistent phonon approach to thermal vibrations in model small clusters. <i>Physical Review B</i> , 1989 , 40, 2459-2463	3.3	4
99	Energetics, electronic structure, and positron annihilation studies of carbon-vacancy complexes in iron. <i>European Physical Journal B</i> , 1990 , 81, 281-289	1.2	4
98	Energetics and electronic structure of In on a Cu(100) surface. <i>Physical Review B</i> , 1990 , 41, 4930-4937	3.3	4
97	Effect of size and dimensionality on the magnetic moment of transition metals. <i>Journal of Applied Physics</i> , 1990 , 67, 4484-4486	2.5	4
96	AB initio studies of the electronic structure of micro-clusters. <i>Ultramicroscopy</i> , 1986 , 20, 51-54	3.1	4
95	Evidence for magnetically induced electronic and phonon anomalies in cubic Pd2MnSn (Mossbauer study). <i>Journal of Physics F: Metal Physics</i> , 1983 , 13, 1547-1558		4

94	Muon states in uniaxially strained iron. <i>Physical Review B</i> , 1984 , 29, 4170-4172	3.3	4
93	Hartree-Fock interaction between a helium atom and lithium metal: A test for the effective medium theory. <i>Solid State Communications</i> , 1985 , 55, 725-727	1.6	4
92	Systematics in the Knight shift of rare-earth monopnictides. <i>Physical Review B</i> , 1978 , 17, 1-5	3.3	4
91	Effects of Temperature on the Magnetic Hyperfine Properties of Beryllium. <i>Physical Review B</i> , 1971 , 4, 3931-3934	3.3	4
90	Built-in electric field control of magnetic coupling in van der Waals semiconductors. <i>Physical Review B</i> , 2021 , 103,	3.3	4
89	Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium intercalated gallium film. <i>Applied Physics Letters</i> , 2016 , 108, 253102	3.4	4
88	Magnetic properties of bimetallic clusters composed of Gd and transition metals. <i>Journal of Applied Physics</i> , 2016 , 119, 074301	2.5	4
87	Recent advances in 2D thermoelectric materials 2016 ,		4
86	Rational Design of Stable Dianions by Functionalizing Polycyclic Aromatic Hydrocarbons. <i>ChemPhysChem</i> , 2017 , 18, 1937-1942	3.2	3
85	Tuning range-separated DFT functionals for modeling the peak absorption of MEH-PPV polymer in various solvents. <i>Computational and Theoretical Chemistry</i> , 2019 , 1162, 112506	2	3
84	Designing New Metal Chalcogenide Nanoclusters through Atom-by-Atom Substitution. <i>Small</i> , 2021 , 17, e2002927	11	3
83	Unique reactivity of B in B[GeY] (Y = H, CH, BO, CN): formation of a Lewis base. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 23301-23304	3.6	3
82	Structural, electronic and magnetic properties of neutral and anionic Fe2(BO2)n (n=1B) clusters. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2014 , 378, 2959-2964	2.3	3
81	Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters. <i>Physica B: Condensed Matter</i> , 2011 , 406, 4322-4326	2.8	3
80	Clusters. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 2010 , 37-70		3
79	Stabilizing a 22 karat nanogolden cage. <i>Journal of Chemical Physics</i> , 2009 , 131, 204501	3.9	3
78	Quantum diffusion of muonium in the alkali halides. <i>Physical Review B</i> , 1995 , 51, 15879-15884	3.3	3
77	CLUSTERS WITH NOVEL PROPERTIES. International Journal of Modern Physics B, 1992, 06, 3657-3666	1.1	3

76	Energetics and electronic structure of hydrogenated clusters. <i>Journal of the Less Common Metals</i> , 1991 , 172-174, 387-394		3
75	Cluster calculations of the interactions of \blacksquare with lattice defects in Li. <i>Hyperfine Interactions</i> , 1984 , 17, 247-253	0.8	3
74	Nonlocal pseudopotential theory of electron transport in liquid metals. <i>Physical Review B</i> , 1976 , 14, 24	22 <u>-3</u> 42	63
73	Substituent-Stabilized Organic Dianions in the Gas Phase and Their Potential Use as Electrolytes in Lithium-Ion Batteries. <i>ChemPhysChem</i> , 2016 , 17, 2992-2997	3.2	3
72	Hex-C558: A new porous metallic carbon allotrope for lithium-ion battery anode. <i>Carbon</i> , 2021 , 183, 65	52 -655 9	3
71	Structure of Homo- and Hetero-Nuclear Micro-Clusters 1987 , 369-382		3
70	Argyrodite-type advanced lithium conductors and transport mechanisms beyond peddle-wheel effect <i>Nature Communications</i> , 2022 , 13, 2078	17.4	3
69	Boronated holey graphene: a case of 2D ferromagnetic metal. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 21128-21135	3.6	2
68	Catalytic activities of platinum nanotubes: a density functional study. <i>European Physical Journal B</i> , 2015 , 88, 1	1.2	2
67	LiFe2Cln (n = 4B) clusters: Double-exchange mediated molecular magnets. <i>Applied Physics Letters</i> , 2014 , 105, 163112	3.4	2
66	Receptor-ligand interaction at 5-HT3 serotonin receptors: a cluster approach. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 8471-6	2.8	2
65	Electronic and magnetic properties of pristine and transition metal doped ZnTe nanowires. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 266003	1.8	2
64	Doping induced anisotropic growth in C60. Journal of Chemical Physics, 2009, 130, 184714	3.9	2
63	Kiran et al. Reply:. <i>Physical Review Letters</i> , 2008 , 100,	7.4	2
62	Novel phenomenon in charged clusters. <i>Scripta Materialia</i> , 1992 , 1, 137-142		2
61	Magnetism and local order. Zeitschrift Fil Physik D-Atoms Molecules and Clusters, 1989, 12, 361-363		2
60	Liu et al. reply. <i>Physical Review Letters</i> , 1990 , 65, 1169	7.4	2
59	Isotope Effect on the Electronic Structure of Hydrogen in Metals. <i>Materials Research Society Symposia Proceedings</i> , 1980 , 3, 547		2

58	Theory of impurity hyperfine field systematics in ferromagnetic hosts. <i>Hyperfine Interactions</i> , 1981 , 9, 405-408	0.8	2
57	Role of Size and Composition on the Design of Superalkalis. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 5886-5894	2.8	2
56	Two-dimensional metal-free boron chalcogenides BX (X = Se and Te) as photocatalysts for water splitting under visible light. <i>Nanoscale</i> , 2021 , 13, 3627-3632	7.7	2
55	Binding of noble gas atoms by superhalogens. <i>Journal of Chemical Physics</i> , 2021 , 155, 014304	3.9	2
54	Super-electrophiles of tri- and tetra-anions stabilized by selected terminal groups and their role in binding noble gas atoms. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 21496-21500	3.6	2
53	Electronic Structure and Properties of Small Be-Clusters 1987 , 431-434		2
52	Interfacial triferroicity in monolayer chromium dihalide. <i>Physical Review B</i> , 2022 , 105,	3.3	2
51	Clusters and Nanomaterials for Sustainable Energy. ACS Energy Letters, 2020, 5, 428-429	20.1	1
50	Potential of ZrO clusters as replacement Pd catalyst. <i>Journal of Chemical Physics</i> , 2014 , 141, 034301	3.9	1
49	Probing the existence of energetically degenerate cluster isomers by chemical tagging. <i>Applied Physics Letters</i> , 2010 , 97, 223104	3.4	1
48	Interaction of C(59)Si with Si based clusters: a study of Janus nanostructures. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 275303	1.8	1
47	Electrical transition of (3,3) carbon nanotube on patterned hydrogen terminated Si(001)-2 II driven by electric field. <i>Journal of Applied Physics</i> , 2012 , 111, 123717	2.5	1
46	Interaction of Pd and PdCl2 with cellulose: a theoretical investigation. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 23655-60	3.4	1
45	Electronic Structure and Hydrogen Desorption in NaAlH4. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 837, 31		1
44	Role of excess electrons on the stability of metal-cluster hydrides. <i>Physical Review B</i> , 1992 , 45, 13631-13	3 6.3 5	1
43	Interplanar relaxation at the (0001) surface of Be. Surface Science Letters, 1993, 289, L614-L616		1
42	Theory of fractional Knight shift in liquid binary alloys. <i>Physical Review B</i> , 1984 , 30, 6826-6833	3.3	1
41	Positive muon as a probe of magnetization density in ferromagnetic metal vacancies. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1977 , 60, 50-52	2.3	1

40	Magnetism of Finite Systems: From Clusters to Crystals 1992 , 709-720		1
39	Interaction of Clusters with Substrates 1992 , 1065-1070		1
38	Many faces of carbon 2016 ,		1
37	Imidazole-graphyne: a new 2D carbon nitride with a direct bandgap and strong IR refraction. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 10274-10280	3.6	1
36	Collective Superexchange and Exchange Coupling Constants in the Hydrogenated Iron Oxide Particle FeOH. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 5043-5049	2.8	1
35	Realization of the Zn oxidation state. <i>Nanoscale</i> , 2021 , 13, 14041-14048	7.7	1
34	Direct Evidence for Interstitial and Vacancy-Associated Hydrogen Trapping Near Impurity Atoms in F.C.C. Metals 1983 , 567-579		1
33	Signature of Au as a Halogen. Journal of Physical Chemistry Letters,4721-4728	6.4	1
32	Homocoupling and Heterocoupling of Grignard Perfluorobenzene Reagents via Aryne Intermediates: A DFT Study. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 9693-9700	2.8	0
31	B2H6 splitting on catalytic surfaces and role of BH3 towards hydrogen spillover. <i>Journal of Power Sources</i> , 2020 , 455, 227973	8.9	O
30	SbCl: An Exceptional Superhalogen as the Building Block of a Mixed Valence Supercrystal with Unconventional Ferroelectricity <i>Journal of Physical Chemistry Letters</i> , 2022 , 1049-1056	6.4	0
29	Superatomic chemistry. Journal of the Indian Chemical Society, 2022, 99, 100350		O
28	Boron-Functionalized Organic Framework as a High-Performance Metal-Free Catalyst for N Fixation <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 12142-12149	6.4	0
27	Assembling a bi-coordinated Cr complex for ferromagnetic nanorings: insight from first-principles calculations. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 17868-74	3.6	
26	Stable Tetra- and Penta-Anions in the Gas Phase. Angewandte Chemie, 2019, 131, 11370-11374	3.6	
25	Chain-like structures of gold supported by silicon substrate. <i>Physica Status Solidi (B): Basic Research</i> , 2014 , 251, 924-932	1.3	
24	Electric field-induced metallic transition of (3,3) carbon nanotube supported on patterned hydrogen-terminated Si(001):1 [1] surface. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	
23	Magnetism of Transition Metal Doped GaN Nanostructures245-274		

(1998-2003)

Design of High-Energetic Materials at the Nanoscale. Materials Research Society Symposia 22 Proceedings, 2003, 800, 259 Niu, Rao, and Jena reply. Physical Review Letters, 1993, 70, 3837 21 7.4 Simulation of muonium quantum diffusion including self-consistent electronic structure in alkali 20 0.9 halides. Radiation Effects and Defects in Solids, 1991, 119-121, 593-594 Theoretical study of muon-induced solitons in polyacetylene. Physical Review B, 1990, 42, 3052-3056 19 3.3 ab-initio tight-binding theory for the electronic structure. Journal of Non-Crystalline Solids, 1990, 18 3.9 117-118, 297-299 Superatom-Based Ferroelectrics 2021, 257-275 17 16 Rational Design of Superatoms Using Electron-Counting Rules 2021, 15-51 Cluster-based Materials for Energy Harvesting and Storage 2021, 277-316 Screening of an Atomic Impurity in Electron Liquid. Journal of the Physical Society of Japan, 1981, 1.5 14 50, 2413-2416 Clusters for CO 2 Activation and Conversion 2021, 349-374 13 Clusters Ta Link Between Condensed Matter Physics and Nuclear Physics 1992, 135-144 12 Compound Versus Pure Metal Microclusters: How the Photoabsorption Profiles Relate to the 11 Abundance Spectra **1992**, 703-708 Role of Valence Electrons in the Structure and Properties of Microclusters. Springer Series in 10 Nuclear and Particle Physics, 1992, 421-434 Electronic and Structural Properties of Caged Metal Clusters **1994**, 371-380 9 Interaction of Hydrogen Molecules with Metal Cluster Ions 1994, 1277-1282 8 Electronic structure and properties of designer clusters and cluster-assemblies 1995, 68-72 Clusters and Cluster Reactions 1996, 123-151

Electronic Structure of Magic Metal Clusters and Cluster Assemblies 1998, 179-186

Structural and Electronic Properties of Compound Metal Clusters **1986**, 119-122

3	Theoretical Predictions of the Vibrational Frequencies of Singlet Li4 1987 , 493-498	
2	Innentitelbild: Stable Tetra- and Penta-Anions in the Gas Phase (Angew. Chem. 33/2019). <i>Angewandte Chemie</i> , 2019 , 131, 11246	3.6
1	Halogen-Free Electrolytes Based on Modified Boranes for Alkali-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 5112-5121	3.8