Puru Jena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3504734/publications.pdf

Version: 2024-02-01

9103 5268 144 30,178 625 83 citations h-index g-index papers 650 650 650 17442 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Penta-graphene: A new carbon allotrope. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2372-2377.	7.1	1,114
2	Materials for Hydrogen Storage: Past, Present, and Future. Journal of Physical Chemistry Letters, 2011, 2, 206-211.	4.6	818
3	Ferromagnetism in Semihydrogenated Graphene Sheet. Nano Letters, 2009, 9, 3867-3870.	9.1	771
4	Clustering of Ti on a C60Surface and Its Effect on Hydrogen Storage. Journal of the American Chemical Society, 2005, 127, 14582-14583.	13.7	675
5	Assembling crystals from clusters. Physical Review Letters, 1992, 69, 1664-1667.	7.8	574
6	First-Principles Study of Hydrogen Storage on Li12C60. Journal of the American Chemical Society, 2006, 128, 9741-9745.	13.7	533
7	Hydrogen interactions with defects in crystalline solids. Reviews of Modern Physics, 1992, 64, 559-617.	45.6	471
8	Atomic clusters: Building blocks for a class of solids. Physical Review B, 1995, 51, 13705-13716.	3.2	432
9	Structures and Phase Transition of a MoS ₂ Monolayer. Journal of Physical Chemistry C, 2014, 118, 1515-1522.	3.1	432
10	Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chemical Reviews, 2018, 118, 5755-5870.	47.7	426
11	Vacancy-induced magnetism in ZnO thin films and nanowires. Physical Review B, 2008, 77, .	3.2	409
12	Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis. Journal of Chemical Physics, 1999, 111, 1890-1904.	3.0	332
13	Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. Physical Review B, 2010, 81, .	3.2	278
14	Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Physical Chemistry Chemical Physics, 2016, 18, 8777-8784.	2.8	273
15	Beyond the Periodic Table of Elements: The Role of Superatoms. Journal of Physical Chemistry Letters, 2013, 4, 1432-1442.	4.6	248
16	Magic Numbers in Metallo-Inorganic Clusters: Chromium Encapsulated in Silicon Cages. Physical Review Letters, 2002, 89, 016803.	7.8	243
17	Electric field enhanced hydrogen storage on polarizable materials substrates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2801-2806.	7.1	221
18	Binding of hydrogen molecules by a transition-metal ion. Physical Review Letters, 1992, 68, 2277-2280.	7.8	220

#	Article	lF	CITATIONS
19	Electronic Structure and Properties of Transition Metalâ^'Benzene Complexes. Journal of the American Chemical Society, 2001, 123, 3799-3808.	13.7	219
20	Clusters: A bridge across the disciplines of physics and chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10560-10569.	7.1	218
21	Direct Observation of Key Reaction Intermediates on Gold Clusters. Journal of the American Chemical Society, 2003, 125, 2848-2849.	13.7	206
22	Ï-Graphene: A New Metallic Allotrope of Planar Carbon with Potential Applications as Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2017, 8, 3234-3241.	4.6	205
23	Potential of AlN Nanostructures as Hydrogen Storage Materials. ACS Nano, 2009, 3, 621-626.	14.6	201
24	Carbon Nanomaterials as Catalysts for Hydrogen Uptake and Release in NaAlH ₄ . Nano Letters, 2009, 9, 1501-1505.	9.1	200
25	Electronic structures and bonding of graphyne sheet and its BN analog. Journal of Chemical Physics, 2011, 134, 174701.	3.0	182
26	The Intrinsic Ferromagnetism in a MnO ₂ Monolayer. Journal of Physical Chemistry Letters, 2013, 4, 3382-3386.	4.6	171
27	Functionalized Graphitic Carbon Nitride for Efficient Energy Storage. Journal of Physical Chemistry C, 2013, 117, 6055-6059.	3.1	171
28	Unexpected Stability of Al4H6: A Borane Analog?. Science, 2007, 315, 356-358.	12.6	169
28	Unexpected Stability of Al4H6: A Borane Analog?. Science, 2007, 315, 356-358. Spin Conservation Accounts for Aluminum Cluster Anion Reactivity Pattern with O ₂ . Science, 2008, 319, 438-442.	12.6	169
	Spin Conservation Accounts for Aluminum Cluster Anion Reactivity Pattern with O ₂ .		
29	Spin Conservation Accounts for Aluminum Cluster Anion Reactivity Pattern with O ₂ . Science, 2008, 319, 438-442. Atomically Thin Transition-Metal Dinitrides: High-Temperature Ferromagnetism and Half-Metallicity.	12.6	168
30	Spin Conservation Accounts for Aluminum Cluster Anion Reactivity Pattern with O ₂ . Science, 2008, 319, 438-442. Atomically Thin Transition-Metal Dinitrides: High-Temperature Ferromagnetism and Half-Metallicity. Nano Letters, 2015, 15, 8277-8281. Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN ₂ Sheet. Journal of Physical	12.6 9.1	168
29 30 31	Spin Conservation Accounts for Aluminum Cluster Anion Reactivity Pattern with O ₂ . Science, 2008, 319, 438-442. Atomically Thin Transition-Metal Dinitrides: High-Temperature Ferromagnetism and Half-Metallicity. Nano Letters, 2015, 15, 8277-8281. Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN ₂ Sheet. Journal of Physical Chemistry C, 2016, 120, 3993-3998. Physics of small metal clusters: Topology, magnetism, and electronic structure. Physical Review B,	12.6 9.1 3.1	168 168 167
29 30 31 32	Spin Conservation Accounts for Aluminum Cluster Anion Reactivity Pattern with O ₂ . Science, 2008, 319, 438-442. Atomically Thin Transition-Metal Dinitrides: High-Temperature Ferromagnetism and Half-Metallicity. Nano Letters, 2015, 15, 8277-8281. Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN ₂ Sheet. Journal of Physical Chemistry C, 2016, 120, 3993-3998. Physics of small metal clusters: Topology, magnetism, and electronic structure. Physical Review B, 1985, 32, 2058-2069. Systematic Study of Oxo, Peroxo, and Superoxo Isomers of 3d-Metal Dioxides and Their Anions. Journal	12.6 9.1 3.1 3.2	168 168 167 157
29 30 31 32	Spin Conservation Accounts for Aluminum Cluster Anion Reactivity Pattern with O ₂ . Science, 2008, 319, 438-442. Atomically Thin Transition-Metal Dinitrides: High-Temperature Ferromagnetism and Half-Metallicity. Nano Letters, 2015, 15, 8277-8281. Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN < sub>2 < /sub> Sheet. Journal of Physical Chemistry C, 2016, 120, 3993-3998. Physics of small metal clusters: Topology, magnetism, and electronic structure. Physical Review B, 1985, 32, 2058-2069. Systematic Study of Oxo, Peroxo, and Superoxo Isomers of 3d-Metal Dioxides and Their Anions. Journal of Physical Chemistry A, 2000, 104, 11961-11971. Hyperhalogens: Discovery of a New Class of Highly Electronegative Species. Angewandte Chemie -	12.6 9.1 3.1 3.2 2.5	168 168 167 157

#	Article	IF	CITATIONS
37	Optical properties of Ti3SiC2 and Ti4AlN3. Applied Physics Letters, 2008, 92, .	3.3	143
38	Stable three-dimensional metallic carbon with interlocking hexagons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18809-18813.	7.1	134
39	Hydrogen storage and the 18-electron rule. Journal of Chemical Physics, 2006, 124, 224703.	3.0	133
40	Origin of the unusual stability of MnO4â^. Chemical Physics Letters, 1999, 312, 598-605.	2.6	132
41	Geometry and electronic structure of Vn(Bz)m complexes. Journal of Chemical Physics, 2004, 120, 10414-10422.	3.0	130
42	Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes. Journal of Chemical Theory and Computation, 2009, 5, 374-379.	5.3	130
43	Magnetism and local order:Ab initiotight-binding theory. Physical Review B, 1989, 39, 6914-6924.	3.2	128
44	Electronic structure and magnetism ofRhn(n=2–13)clusters. Physical Review B, 1999, 59, 5214-5222.	3.2	127
45	The rise of twoâ€dimensional van der Waals ferroelectrics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1365.	14.6	127
46	Lattice thermal conductivity of penta-graphene. Carbon, 2016, 105, 424-429.	10.9	120
		10.3	
47	Superalkalis and Superhalogens As Building Blocks of Supersalts. Journal of Physical Chemistry A, 2014, 118, 638-645.	2.5	119
47			
	2014, 118, 638-645. Atomic and electronic structure of neutral and charged SinOm clusters. Journal of Chemical Physics,	2.5	119
48	2014, 118, 638-645. Atomic and electronic structure of neutral and charged SinOm clusters. Journal of Chemical Physics, 1998, 109, 1245-1250. Superhalogens as Building Blocks of Halogenâ€Free Electrolytes in Lithiumâ€Ion Batteries. Angewandte	2.5 3.0	119
48	Atomic and electronic structure of neutral and charged SinOm clusters. Journal of Chemical Physics, 1998, 109, 1245-1250. Superhalogens as Building Blocks of Halogenâ€Free Electrolytes in Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 13916-13919. Electronic structure of chromium oxides, CrOnâ⁻¹ and CrOn (n=1–5) from photoelectron spectroscopy	2.5 3.0 13.8	119 118 117
48 49 50	Atomic and electronic structure of neutral and charged SinOm clusters. Journal of Chemical Physics, 1998, 109, 1245-1250. Superhalogens as Building Blocks of Halogenâ€Free Electrolytes in Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2014, 53, 13916-13919. Electronic structure of chromium oxides, CrOnâ⁻¹ and CrOn (n=1–5) from photoelectron spectroscopy and density functional theory calculations. Journal of Chemical Physics, 2001, 115, 7935-7944.	2.5 3.0 13.8 3.0	119 118 117 115
48 49 50	Atomic and electronic structure of neutral and charged SinOm clusters. Journal of Chemical Physics, 1998, 109, 1245-1250. Superhalogens as Building Blocks of Halogenâ€Free Electrolytes in Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 13916-13919. Electronic structure of chromium oxides, CrOnâ⁻¹ and CrOn (n=1–5) from photoelectron spectroscopy and density functional theory calculations. Journal of Chemical Physics, 2001, 115, 7935-7944. Anomalous magnetism in small Mn clusters. Chemical Physics Letters, 1998, 289, 473-479.	2.5 3.0 13.8 3.0	119 118 117 115

#	Article	IF	Citations
55	Physics of Nickel Clusters. 2. Electronic Structure and Magnetic Properties. Journal of Physical Chemistry A, 1998, 102, 1748-1759.	2.5	110
56	Quantum anomalous Hall effect in ferromagnetic transition metal halides. Physical Review B, 2017, 95,	3.2	110
57	Appearance of bulk properties in small tungsten oxide clusters. Journal of Chemical Physics, 2004, 121, 9417-9422.	3.0	109
58	Interactions of Au cluster anions with oxygen. Journal of Chemical Physics, 2004, 120, 6510-6515.	3.0	107
59	Li-rich antiperovskite superionic conductors based on cluster ions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11046-11051.	7.1	107
60	Temperature Dependence of Electric Field Gradients in Noncubic Metals. Physical Review Letters, 1976, 36, 418-421.	7.8	106
61	Storage of Molecular Hydrogen in Bâ^'N Cage:  Energetics and Thermal Stability. Nano Letters, 2005, 5, 1273-1277.	9.1	106
62	Electronic structure of hydrogen in simple metals. Physical Review B, 1978, 17, 3518-3524.	3.2	105
63	Electronic, Magnetic, and Geometric Structure of Metallo-Carbohedrenes. Science, 1992, 258, 1640-1643.	12.6	105
64	Physics of Nickel Clusters:  Energetics and Equilibrium Geometries. Journal of Physical Chemistry A, 1997, 101, 1072-1080.	2.5	103
65	Mechanistic Insight into Photocatalytic Pathways of MIL-100(Fe)/TiO ₂ Composites. ACS Applied Materials & Interfaces, 2019, 11, 12516-12524.	8.0	103
66	Electronic Structure of the 3d Metal Monoxide Anions. Journal of Physical Chemistry A, 2000, 104, 5374-5379.	2.5	102
67	Unique magnetic signature of transition metal atoms supported on benzene. Chemical Physics Letters, 2000, 321, 142-150.	2.6	101
68	Superhalogen Properties of Fluorinated Coinage Metal Clusters. Journal of Physical Chemistry C, 2010, 114, 16018-16024.	3.1	101
69	Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Physical Review B, 2013, 87, .	3.2	100
70	Ferromagnetism in Mn-Doped GaN Nanowires. Physical Review Letters, 2005, 95, 167202.	7.8	96
71	Atomic and electronic structures of neutral and charged boron and boron-rich clusters. Journal of Chemical Physics, 1997, 107, 132-140.	3.0	95
72	Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer. Journal of Materials Chemistry, 2012, 22, 13524.	6.7	95

#	Article	IF	CITATIONS
73	Designing ionic solids from metallic clusters. Chemical Physics Letters, 1994, 219, 479-483.	2.6	91
74	Ferromagnetism in small clusters. Physical Review Letters, 1991, 66, 938-941.	7.8	90
7 5	Anomalous Behavior of Atomic Hydrogen Interacting with Gold Clusters. Journal of the American Chemical Society, 2003, 125, 14205-14209.	13.7	90
76	Closo-alanes (Al4H4, AlnHn+2, 4 â‰n≠8): A New Chapter in Aluminum Hydride Chemistry. Journal of the American Chemical Society, 2007, 129, 5969-5975.	13.7	90
77	Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule, 2022, 6, 543-587.	24.0	90
78	Electronic signature of the magicity and ionic bonding inAl13X(X=Li–K)clusters. Physical Review B, 2002, 65, .	3.2	89
79	Role of catalysts in dehydrogenation of MgH ₂ nanoclusters. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8227-8231.	7.1	89
80	Functionalized heterofullerenes for hydrogen storage. Applied Physics Letters, 2009, 94, .	3.3	89
81	Equilibrium Geometry, Stability, and Magnetic Properties of Small MnO Clusters. Journal of the American Chemical Society, 1999, 121, 644-652.	13.7	88
82	Stabilization of Si60 Cage Structure. Physical Review Letters, 2003, 90, 135503.	7.8	88
83	Clusters: A bridge across the disciplines of environment, materials science, and biology. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10554-10559. Magnetic properties of transition-metal-doped <mml:math< td=""><td>7.1</td><td>88</td></mml:math<>	7.1	88
84	xmlns:mml="http://www.w3.org/1998/Math/MathML"		

#	Article	IF	Citations
91	Relationship between magnetism, topology, and reactivity of Rh clusters. Physical Review B, 1997, 56, 8849-8854.	3.2	81
92	AlH3andAl2H6: Magic Clusters with Unmagical Properties. Physical Review Letters, 2001, 86, 692-695.	7.8	81
93	Vacancy-mediated hydrogen desorption inNaAlH4. Physical Review B, 2005, 72, .	3.2	81
94	Manganeseâ€Based Magnetic Superhalogens. Angewandte Chemie - International Edition, 2011, 50, 2568-2572.	13.8	81
95	Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes. Physical Review B, 2011, 84, .	3.2	81
96	Magic Rule forAlnHmMagic Clusters. Physical Review Letters, 2007, 98, 256802.	7.8	80
97	Exceptional Thermoelectric Properties of Layered GeAs ₂ . Chemistry of Materials, 2017, 29, 9300-9307.	6.7	80
98	Penta-BCN: A New Ternary Pentagonal Monolayer with Intrinsic Piezoelectricity. Journal of Physical Chemistry Letters, 2020, 11, 3501-3506.	4.6	80
99	Spontaneous fragmentation of multiply charged metal clusters. Physical Review Letters, 1987, 58, 1188-1191.	7.8	79
100	Interaction of H2 and He with metal atoms, clusters, and ions. Physical Review B, 1995, 51, 4475-4484.	3.2	78
101	Borane Derivatives: A New Class of Super―and Hyperhalogens. ChemPhysChem, 2011, 12, 2423-2428.	2.1	77
102	Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14648-14655.	8.0	76
103	Lithium-doped triazine-based graphitic C3N4 sheet for hydrogen storage at ambient temperature. Computational Materials Science, 2014, 81, 275-279.	3.0	7 5
104	Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage. Carbon, 2011, 49, 4050-4058.	10.3	74
105	A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties. Scientific Reports, 2015, 5, 14342.	3.3	74
106	Boosting the Curie Temperature of Two-Dimensional Semiconducting Crl ₃ Monolayer through van der Waals Heterostructures. Journal of Physical Chemistry C, 2019, 123, 17987-17993.	3.1	74
107	Electronic Structure and Properties of FeOnand FeOn-Clusters. Journal of Physical Chemistry A, 1999, 103, 5812-5822.	2.5	72
108	Stability of B ₁₂ (CN) ₁₂ ^{2â^'} : Implications for Lithium and Magnesium Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 3704-3708.	13.8	72

#	Article	IF	Citations
109	Tetragonal C ₂₄ : a topological nodal-surface semimetal with potential as an anode material for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 5733-5739.	10.3	72
110	Structure and stability of the AlX and AlXâ^² species. Journal of Chemical Physics, 1999, 110, 2928-2935.	3.0	70
111	First-principles calculations of metal stabilizedSi20cages. Physical Review B, 2002, 65, .	3.2	70
112	Periodic table of 3d-metal dimers and their ions. Journal of Chemical Physics, 2004, 121, 6785-6797.	3.0	70
113	Role of titanium in hydrogen desorption in crystalline sodium alanate. Applied Physics Letters, 2005, 86, 251913.	3.3	69
114	Comment on "Combinatorial Search for Optimal Hydrogen-Storage Nanomaterials Based on Polymers― Physical Review Letters, 2006, 97, 209601.	7.8	69
115	Theoretical Study of the Stability and Electronic Structure of Al(BH4)n=1â†'4and Al(BF4)n=1â†'4and Their Hyperhalogen Behavior. Journal of Physical Chemistry A, 2011, 115, 10237-10243.	2.5	69
116	Ferromagnetism in Mn-doped GaN:â€fFrom clusters to crystals. Physical Review B, 2003, 68, .	3.2	68
117	Clusters: A bridge between disciplines. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10552-10553.	7.1	68
118	Interpretation of hyperfine fields in concentrated ferromagnetic alloys. Solid State Communications, 1974, 15, 139-142.	1.9	67
119	Isomerism and Novel Magnetic Order in Mn13Cluster. Journal of Physical Chemistry A, 1999, 103, 9853-9856.	2.5	67
120	Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic. Physical Review B, 2012, 85, .	3.2	67
121	Giant Magnetic Moments and Magnetic Bistability of Stoichiomatric MnO Clusters. Physical Review Letters, 1998, 81, 2970-2973.	7.8	66
122	Isomers of Al13 clusters and their interaction with alkali atoms. Physical Review B, 2000, 62, 4666-4671.	3.2	66
123	Quantum chemical study of adhesion at the SiC/Al interface. Journal of Applied Physics, 1988, 64, 6246-6253.	2.5	65
124	Body entered Tetragonal C ₁₆ : A Novel Topological Nodeâ€Line Semimetallic Carbon Composed of Tetrarings. Small, 2017, 13, 1602894.	10.0	65
125	Stability of Doubly Charged Transition-Metal Dimers. Physical Review Letters, 1987, 59, 2562-2565.	7.8	64
126	Competition between linear and cyclic structures in monochromium carbide clusters CrCnâ^' and CrCn (n=2–8): A photoelectron spectroscopy and density functional study. Journal of Chemical Physics, 2004, 120, 8996-9008.	3.0	64

#	Article	IF	CITATIONS
127	Structure and Properties of Fe _{<i>n</i>} , Fe _{<i>n</i>} ^{â€"} , and Fe _{<i>n</i>} ⁺ Clusters, <i>n</i> 116, 10218-10228.	2.5	64
128	Valley-Polarized Quantum Anomalous Hall Effect in Ferrimagnetic Honeycomb Lattices. Physical Review Letters, 2017, 119, 046403.	7.8	64
129	Electronic structure of substoichiometric Fe-Al intermetallics. Physical Review B, 2002, 66, .	3.2	63
130	Ferromagnetism in Cr-doped GaN: A first-principles calculation. Physical Review B, 2004, 69, .	3.2	63
131	Ab initiocalculation of interatomic potentials and electronic properties of a simple metal—Al. Physical Review B, 1981, 24, 7057-7070.	3.2	62
132	Evolution of the electronic and structural properties of microclusters. Physical Review B, 1987, 36, 953-960.	3.2	62
133	Stability and magnetic properties of iron atoms encapsulated in Si clusters. Chemical Physics Letters, 2003, 373, 433-438.	2.6	62
134	Molecular Origin of Properties of Organic–Inorganic Hybrid Perovskites: The Big Picture from Small Clusters. Journal of Physical Chemistry Letters, 2016, 7, 1596-1603.	4.6	60
135	Evidence for a new class of solids. First-principles study of K(Al13). Chemical Physics Letters, 1996, 248, 213-217.	2.6	59
136	Experimental and theoretical study of the photoelectron spectra of MnOxâ^'(x=1â€"3) clusters. Journal of Chemical Physics, 2000, 113, 1473-1483.	3.0	59
137	Equilibrium structure and bonding of small iron–carbon clusters. Journal of Chemical Physics, 1996, 105, 11020-11023.	3.0	58
138	Energetics and electronic structure of carbon doped aluminum clusters. Journal of Chemical Physics, 2001, 115, 778-783.	3.0	58
139	Ferromagnetic and Half-Metallic FeC ₂ Monolayer Containing C ₂ Dimers. ACS Applied Materials & Dimers. ACS	8.0	58
140	Rational design of super-alkalis and their role in CO ₂ activation. Nanoscale, 2017, 9, 4891-4897.	5.6	58
141	FeO4:A unique example of a closed-shell cluster mimicking a superhalogen. Physical Review A, 1999, 59, 3681-3684.	2.5	57
142	Magnetic coupling between Cr atoms doped at bulk and surface sites of ZnO. Applied Physics Letters, 2005, 87, 162509.	3.3	57
143	Theoretical study of deep-defect states in bulk PbTe and in thin films. Physical Review B, 2007, 76, .	3.2	57
144	Synthesis and characterization of highly porous borazine-linked polymers and their performance in hydrogen storage application. Journal of Materials Chemistry, 2011, 21, 10629.	6.7	57

#	Article	IF	CITATIONS
145	Equilibrium geometries, electronic structure and magnetic properties of small manganese clusters. Journal of Physics Condensed Matter, 1998, 10, 10863-10877.	1.8	56
146	Antiferromagnetic Coupling Driven by Bond Length Contraction near the Galâ^xMnxNFilm Surface. Physical Review Letters, 2004, 93, 155501.	7.8	56
147	Magnetism and energetics of Mn-Doped ZnO ($101\hat{A}^-0$) thin films. Physical Review B, 2004, 69, .	3.2	56
148	Organo–Zintl Clusters [P ₇ R ₄]: A New Class of Superalkalis. Journal of Physical Chemistry Letters, 2016, 7, 800-805.	4.6	56
149	Observation of a spin-protected high-energy isomer of Al4Nâ^' cluster. Chemical Physics Letters, 1999, 301, 379-384.	2.6	55
150	Patterning Graphitic C–N Sheets into a Kagome Lattice for Magnetic Materials. Journal of Physical Chemistry Letters, 2013, 4, 259-263.	4.6	55
151	Superhalogen-based lithium superionic conductors. Journal of Materials Chemistry A, 2017, 5, 13373-13381.	10.3	55
152	Au(CN) $<$ sub $>$ $<$ i $>$ n $<$ lsub $>$ Complexes: Superhalogens with Pseudohalogen as Building Blocks. Inorganic Chemistry, 2011, 50, 8918-8925.	4.0	54
153	A systematic study of neutral and charged 3d-metal trioxides and tetraoxides. Journal of Chemical Physics, 2011, 134, 144305.	3.0	54
154	Strain-Induced Spin Crossover in Phthalocyanine-Based Organometallic Sheets. Journal of Physical Chemistry Letters, 2012, 3, 3109-3114.	4.6	54
155	SiTe monolayers: Si-based analogues of phosphorene. Journal of Materials Chemistry C, 2016, 4, 6353-6361.	5.5	54
156	Switendick criterion for stable hydrides. Physical Review B, 1985, 31, 6726-6730.	3.2	53
157	Magnetism and local order. II. Self-consistent cluster calculations. Physical Review B, 1989, 40, 399-406.	3.2	53
158	Models of electronic structure of hydrogen in metals: Pd-H. Physical Review B, 1979, 20, 3543-3551.	3.2	52
159	Electronic structure and geometries of heteroatomic clusters. Physical Review B, 1988, 37, 2867-2873.	3.2	52
160	Structure of SiAu16: Can a silicon atom be stabilized in a gold cage?. Journal of Chemical Physics, 2007, 127, 214706.	3.0	52
161	Superhalogen properties of CuFn clusters. Journal of Chemical Physics, 2009, 131, 124301.	3.0	52
162	Origin of the Unusual Stability of B ₁₂ and B ₁₃ ⁺ Clusters. Inorganic Chemistry, 2009, 48, 9965-9967.	4.0	52

#	Article	IF	Citations
163	Electron Distribution around a Magnetic Impurity in a Nonmagnetic Host. Physical Review B, 1973, 7, 439-450.	3.2	51
164	Ferrimagnetism in Mn7 cluster. Chemical Physics Letters, 2003, 378, 374-379.	2.6	51
165	Electronic Structure and Bonding of Au on aSiO2Cluster: A Nanobullet for Tumors. Physical Review Letters, 2004, 93, 186803.	7.8	51
166	Structures and photoelectron spectroscopy of Cu <i>n</i> i>(BO2) <i>m</i> i> \hat{a}^{α} (<i>n, m</i> = 1, 2) clusters: Observation of hyperhalogen behavior. Journal of Chemical Physics, 2011, 134, 094309.	3.0	51
167	New insights into carbon dioxide interactions with benzimidazole-linked polymers. Chemical Communications, 2014, 50, 3571-3574.	4.1	51
168	(BAl12)Cs:mA cluster-assembled solid. Physical Review B, 1997, 55, 15868-15873.	3.2	50
169	Synthesis, Characterization, and Atomistic Modeling of Stabilized Highly Pyrophoric Al(BH ₄) ₃ via the Formation of the Hypersalt K[Al(BH ₄) ₄]. Journal of Physical Chemistry C, 2013, 117, 19905-19915.	3.1	50
170	Alkalization of aluminum clusters. Journal of Chemical Physics, 2000, 113, 1508-1513.	3.0	49
171	Ferromagnetic GaNâ^'Cr Nanowires. Nano Letters, 2005, 5, 1587-1590.	9.1	49
172	Effect of Au coating on the magnetic and structural properties of Fe nanoclusters for use in biomedical applications: A density-functional theory study. Physical Review B, 2006, 73, .	3.2	49
173	Negative ions of transition metal-halogen clusters. Journal of Chemical Physics, 2010, 133, 144301.	3.0	49
174	Multiferroic Materials Based on Organic Transition-Metal Molecular Nanowires. Journal of the American Chemical Society, 2012, 134, 14423-14429.	13.7	49
175	Aromatic Superhalogens. Chemistry - A European Journal, 2014, 20, 4736-4745.	3.3	49
176	Geometry, electronic structure, and energetics of copper-doped aluminum clusters. Journal of Chemical Physics, 2001, 114, 9792-9796.	3.0	48
177	Multidecker Organometallic Complexes for Hydrogen Storage. Journal of Physical Chemistry C, 2008, 112, 6181-6185.	3.1	48
178	A Recipe for Designing Molecules with Ever-Increasing Electron Affinities. Journal of Physical Chemistry A, 2012, 116, 1469-1474.	2.5	48
179	Density Functional Theory Study of the Interaction of Hydrogen with Li ₆ C ₆₀ . Journal of Physical Chemistry Letters, 2012, 3, 1084-1088.	4.6	48
180	Caging of Ni clusters by benzene molecules and its effect on the magnetism of Ni clusters. Journal of Chemical Physics, 2002, 116, 1343-1349.	3.0	47

#	Article	IF	CITATIONS
181	Experimental and theoretical studies on inorganic magic clusters: M4X6 (M=W, Mo, X=O, S). Chemical Physics Letters, 2004, 396, 341-345.	2.6	47
182	Structure and properties of the aluminum borates Al(BO ₂) _{<i>n</i>} and Al(BO ₂) _{<i>n</i>} _{<isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isub><isu< td=""><td>3.3</td><td>47</td></isu<></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub>}	3.3	47
183	Dehydrogenation mechanism in catalyst-activatedMgH2. Physical Review B, 2006, 74, .	3.2	46
184	Polyol-Mediated Synthesis of Ultrafine TiO2 Nanocrystals and Tailored Physiochemical Properties by Ni Doping. Journal of Physical Chemistry C, 2009, 113, 9210-9217.	3.1	46
185	Negative Conduction-Electron Contribution to the Field Gradient in Beryllium. Physical Review Letters, 1972, 29, 456-458.	7.8	45
186	Origin of the Unusual Properties of Au _{<i>n</i>} (BO ₂) Clusters. ChemPhysChem, 2010, 11, 853-858.	2.1	45
187	Zn in the +III Oxidation State. Journal of the American Chemical Society, 2012, 134, 8400-8403.	13.7	45
188	High-temperature superconductivity in heavily N- or B-doped graphene. Physical Review B, 2015, 92, .	3.2	45
189	Theory of hydrogen pairing in yttrium. Physical Review Letters, 1989, 63, 1396-1399.	7.8	44
190	Structure and properties of Ni7 cluster isomers. Chemical Physics Letters, 1996, 253, 390-396.	2.6	44
191	Unambiguous assignment of the ground state of a nearly degenerate cluster. Physical Review B, 2000, 62, 1604-1606.	3.2	44
192	Potential candidates for hyperhalogens: A comparative study of BO2, AlO2, and VO3 species. Journal of Chemical Physics, 2011, 135, 144305.	3.0	44
193	Superhalogen properties of CumCln clusters: Theory and experiment. Journal of Chemical Physics, 2011, 135, 244312.	3.0	44
194	A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. Journal of Materials Chemistry A, 2018, 6, 13816-13824.	10.3	44
195	Sodium Superionic Conductors Based on Clusters. ACS Applied Materials & Samp; Interfaces, 2019, 11, 963-972.	8.0	44
196	Reactivity of hydrogen with open and closed shell clusters. Chemical Physics Letters, 1994, 218, 383-386.	2.6	43
197	Structure and properties of Mn4Cl9: An antiferromagnetic binary hyperhalogen. Journal of Chemical Physics, 2013, 138, 054309.	3.0	43
198	Yttrium–Sodium Halides as Promising Solid-State Electrolytes with High Ionic Conductivity and Stability for Na-Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 3376-3383.	4.6	43

#	Article	lF	Citations
199	Tailoring Li adsorption on graphene. Physical Review B, 2014, 90, .	3.2	42
200	Electronic structure, magnetic behavior, and stability of Ni-P. Physical Review B, 1987, 36, 5446-5453.	3.2	41
201	Thermodynamics of small nickel clusters. Journal of Physics Condensed Matter, 1998, 10, 10853-10862.	1.8	41
202	Electronic structure and transport properties of Fe–Al alloys. Intermetallics, 2000, 8, 1197-1207.	3.9	41
203	Equilibrium geometries, magic numbers and electronic structure of small carbon clusters. Solid State Communications, 1986, 58, 53-56.	1.9	40
204	Optical resonances in bimetallic clusters and their relation to the electronic structure. Physical Review B, 1992, 46, 9751-9760.	3.2	40
205	Structure and magnetic properties of Fe-Ni clusters. Physical Review B, 2001, 64, .	3.2	40
206	Electronic structure and properties of isoelectronic magic clusters: Al13Xâ€^(X=H,Au,Li,Na,K,Rb,Cs). Journal of Chemical Physics, 2010, 133, 124308.	3.0	40
207	Intrinsic ferromagnetism in two-dimensional carbon structures: Triangular graphene nanoflakes linked by carbon chains. Physical Review B, 2011, 84, .	3.2	40
208	Designing New Materials Using Atomic Clusters. Journal of Cluster Science, 1999, 10, 477-491.	3.3	39
209	A novel strategy for reversible hydrogen storage in Ca(BH4)2. Chemical Communications, 2015, 51, 11008-11011.	4.1	39
210	Self-consistent screening of a positive muon in a spin-polarized electron gas. Physical Review B, 1978, 17, 301-307.	3.2	38
211	Quantum size effect on the magnetism of finite systems. Physical Review B, 1990, 42, 976-979.	3.2	38
212	First-principles studies of the geometry and energetics of the Si36 cluster. Physical Review A, 2003, 67, .	2.5	38
213	First-principles study of magnetic properties in V-doped ZnO. Applied Physics Letters, 2007, 91, 063116.	3.3	38
214	Enhanced Hydrogen Storage on Li Functionalized BC ₃ Nanotube. Journal of Physical Chemistry C, 2011, 115, 6136-6140.	3.1	38
215	Superhalogens: A Bridge between Complex Metal Hydrides and Li Ion Batteries. Journal of Physical Chemistry Letters, 2015, 6, 1119-1125.	4. 6	38
216	Design of Janus Nanoparticles with Atomic Precision: Tungsten-Doped Gold Nanostructures. ACS Nano, 2008, 2, 341-347.	14.6	37

#	Article	IF	Citations
217	Aluminum Zintl anion moieties within sodium aluminum clusters. Journal of Chemical Physics, 2014, 140, 054301.	3.0	37
218	New Phosphorene Allotropes Containing Ridges with 2- and 4-Coordination. Journal of Physical Chemistry C, 2015, 119, 24674-24680.	3.1	37
219	Electric quadrupole moments and electron affinities of atoms from H to Cl: a coupled-cluster study. Chemical Physics Letters, 1998, 291, 547-552.	2.6	36
220	First-principles study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures. Physical Review B, 2008, 77, .	3.2	36
221	Magnetism in ZnO nanowire with Fe/Co codoping: First-principles density functional calculations. Physical Review B, 2010, 81, .	3.2	36
222	Structure and Spectroscopic Properties of Iron Oxides with the High Content of Oxygen: FeO $<$ sub $<$ i $>n<$ ii $<$ /sub $>$ <sup<math>>â$^{\circ}$</sup<math> >($<$ i $>n<$ /ii $>$ = 5â $^{\circ}$ 12). Journal of Physical Chemistry A, 2010, 114, 9014-9021.	2.5	36
223	Spectroscopy of Nin(benzene)m anion complexes. Journal of Chemical Physics, 2002, 117, 5234-5239.	3.0	35
224	Nitrogen-induced magnetic transition in small chromium clusters. Journal of Chemical Physics, 2003, 119, 7124-7130.	3.0	35
225	Effect of Ti and metal vacancies on the electronic structure, stability, and dehydrogenation ofNa3AlH6: Supercell band-structure formalism and gradient-corrected density-functional theory. Physical Review B, 2006, 73, .	3.2	35
226	Ligand induced ferromagnetism in ZnO nanostructures. Journal of Chemical Physics, 2008, 129, 164714.	3.0	35
227	The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters. Journal of Chemical Physics, 2014, 140, 124309.	3.0	35
228	Tuning electronic and magnetic properties of silicene with magnetic superhalogens. Physical Chemistry Chemical Physics, 2014, 16, 22979-22986.	2.8	35
229	A new C=C embedded porphyrin sheet with superior oxygen reduction performance. Nano Research, 2015, 8, 2901-2912.	10.4	35
230	Complex metal borohydrides: multifunctional materials for energy storage and conversion. Journal of Physics Condensed Matter, 2016, 28, 353001.	1.8	35
231	Theory of Hyperfine Properties of Beryllium and Magnesium Metals. Physical Review B, 1970, 1, 432-447.	3.2	34
232	Hyperfine-field distribution inFe3Si1â^'xAlxalloys and a theoretical interpretation. Physical Review B, 1979, 19, 2933-2938.	3.2	34
233	Relationship between topological and magnetic order in small metal clusters. Physical Review B, 1985, 32, 477-479.	3.2	34
234	Fragmentation channels and their relationship to magic number studies of microclusters. Solid State Communications, 1986, 59, 509-512.	1.9	34

#	Article	IF	Citations
235	Energetics and electronic structures of hydrogenated metal clusters. Physical Review B, 1991, 43, 1416-1421.	3.2	34
236	DFT Study of Structure and Binding Energies of Feâ^'Corannulene Complex. Journal of Physical Chemistry A, 2005, 109, 9220-9225.	2.5	34
237	Oxidation of CO on Fe2O3 model surfaces. Surface Science, 2007, 601, 4873-4880.	1.9	34
238	Superhalogens as building blocks of two-dimensional organic–inorganic hybrid perovskites for optoelectronics applications. Nanoscale, 2016, 8, 17836-17842.	5.6	34
239	Electronic structure and binding energies of hydrogen-decorated vacancies in Ni. Physical Review B, 1997, 55, 4174-4181.	3.2	33
240	Electronic structure and chemical bonding of 3d-metal dimers ScX, X=Sc–Zn. Journal of Chemical Physics, 2001, 114, 10738-10748.	3.0	33
241	Structures of neutral and anionic Au16 clusters revisited. Journal of Chemical Physics, 2010, 132, 194306.	3.0	33
242	Quantum Phase Transition in Germanene and Stanene Bilayer: From Normal Metal to Topological Insulator. Journal of Physical Chemistry Letters, 2016, 7, 1919-1924.	4.6	33
243	Tuning range-separated DFT functionals for modeling the peak absorption of MEH-PPV polymer in various solvents. Computational and Theoretical Chemistry, 2019, 1162, 112506.	2.5	33
244	Antiperovskite K ₃ OI for K-Ion Solid State Electrolyte. Journal of Physical Chemistry Letters, 2021, 12, 7120-7126.	4.6	33
245	Positron annihilation in small metal voids. Solid State Communications, 1977, 21, 293-296.	1.9	32
246	Magic numbers in supported metal clusters. Physical Review B, 1997, 56, 6952-6957.	3.2	32
247	Relationship between photoelectron spectroscopy and the magnetic moment of Ni7 clusters. Physical Review B, 2001, 64, .	3.2	32
248	Reaction Intermediates during the Dehydrogenation of Metal Borohydrides: A Cluster Perspective. Journal of Physical Chemistry C, 2010, 114, 16849-16854.	3.1	32
249	Sc-phthalocyanine sheet: Promising material for hydrogen storage. Applied Physics Letters, 2011, 99, .	3.3	32
250	Monoclinic C16: sp-sp hybridized nodal-line semimetal protected by PT-symmetry. Carbon, 2018, 127, 527-532.	10.3	32
251	Electron-hole droplets and impurity band states in heavily doped Si(P): Photoluminescence experiments and theory. Physical Review B, 1976, 14, 1633-1648.	3.2	31
252	Thermodynamical stability of CH3ONO and CH3ONOâ^': A coupled-cluster and Hartreeâ€"Fock-density-functional-theory study. Journal of Chemical Physics, 1999, 110, 403-411.	3.0	31

#	Article	IF	CITATIONS
253	An all-electron density functional theory study of the structure and properties of the neutral and singly charged ⟨i⟩M⟨ i⟩12 and ⟨i⟩M⟨ i⟩13 clusters: ⟨i⟩M⟨ i⟩ = Sc–Zn. Journal of Chemical Physics, 2013, 138, 164303.	3.0	31
254	B ₁₂ (SCN) ₁₂ [–] : An Ultrastable Weakly Coordinating Dianion. Journal of Physical Chemistry C, 2017, 121, 7697-7702.	3.1	31
255	Rational Design of Porous Nodal-Line Semimetallic Carbon for K-Ion Battery Anode Materials. Journal of Physical Chemistry Letters, 2019, 10, 6360-6367.	4.6	31
256	Theory of Isotropic and Anisotropic Knight Shifts in Beryllium. Physical Review Letters, 1968, 20, 544-546.	7.8	30
257	Theory of Nuclear Quadrupole Interaction in Nontransition Metals—Magnesium. Physical Review B, 1973, 7, 975-980.	3.2	30
258	Effect of sequential oxidation on the electronic structure of tungsten clusters. Chemical Physics Letters, 2004, 387, 29-34.	2.6	30
259	Clustering of Cr in GaN nanotubes and the onset of ferrimagnetic order. Physical Review B, 2006, 73, .	3.2	30
260	Theoretical Study on Gold-Coated Iron Oxide Nanostructure:  Magnetism and Bioselectivity for Amino Acids. Journal of Physical Chemistry C, 2007, 111, 4159-4163.	3.1	30
261	Nitrate Superhalogens as Building Blocks of Hypersalts. Journal of Physical Chemistry A, 2013, 117, 5428-5434.	2.5	30
262	Thermal stability of supported metal clusters. Physical Review B, 1993, 48, 8263-8266.	3.2	29
263	Anomalous Spectroscopy ofLi4â^'Clusters. Physical Review Letters, 1996, 76, 2878-2881.	7.8	29
264	Evolution of the electronic structure of Be clusters. Journal of Chemical Physics, 2005, 123, 074329.	3.0	29
265	Ground state structures and photoelectron spectroscopy of [Com(coronene)]â° complexes. Journal of Chemical Physics, 2007, 126, 084306.	3.0	29
266	Organic Superhalogens. ChemPhysChem, 2014, 15, 2903-2908.	2.1	29
267	N-doped peanut-shaped carbon nanotubes for efficient CO2 electrocatalytic reduction. Carbon, 2019, 152, 241-246.	10.3	29
268	Discovery of twin orbital-order phases in ferromagnetic semiconducting VI ₃ monolayer. Physical Chemistry Chemical Physics, 2020, 22, 512-517.	2.8	29
269	Positron trapping at defects in copper oxide superconductors. Physical Review B, 1991, 43, 10422-10430.	3.2	28
270	Origin of the anatase to rutile conversion of metal-doped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn> Physical Review B, 2009, 79, .</mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	∙2 <i>∛</i> jmml:n	nn ²⁸ /mml:msı

#	Article	IF	CITATIONS
271	Communications: Chain and double-ring polymeric structures: Observation of AlnH3n+1â^'â€^(n=4â€"8) and Al4H14â^'. Journal of Chemical Physics, 2010, 132, 241103.	3.0	28
272	Stability of B ₁₂ (CN) ₁₂ ^{2â^'} : Implications for Lithium and Magnesium Ion Batteries. Angewandte Chemie, 2016, 128, 3768-3772.	2.0	28
273	Hyperfine field systematics of nonmagnetic ions in ferromagnetic alloys. Journal of Magnetism and Magnetic Materials, 1978, 8, 99-111.	2.3	27
274	Electric-Field Gradient at Cu Nuclei Due to an Interstitial Positive Muon. Physical Review Letters, 1978, 40, 264-266.	7.8	27
275	First-principles study of magnetism in (112Ì,,0) Zn1â^'xMnxO thin film. Applied Physics Letters, 2004, 84, 4170-4172.	3.3	27
276	Electronic and Magnetic Properties of Manganese and Iron Atoms Decorated With BO ₂ Superhalogens. Journal of Physical Chemistry A, 2013, 117, 1310-1318.	2.5	27
277	Stability and properties of 2D porous nanosheets based on tetraoxa[8]circulene analogues. Nanoscale, 2014, 6, 14962-14970.	5.6	27
278	Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect. Nature Communications, 2022, 13, 2078.	12.8	27
279	Search for "quadrupole-bound―anions. I. Journal of Chemical Physics, 1999, 111, 504-511.	3.0	26
280	Dehydrogenation from 3d-transition-metal-doped NaAlH4: Prediction of catalysts. Applied Physics Letters, 2007, 90, 141904.	3.3	26
281	Origin of the anomalous magnetic behavior of the Fe <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>13</mml:mn></mml:msub></mml:math> <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow< td=""><td>3.2</td><td>26</td></mml:mrow<></mml:msup></mml:math>	3.2	26
282	Self-consistent determination of Hubbard <mml:math_luster. 2012,="" 86,="" b,="" physical="" review="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi>for explaining the anomalous magnetism of the Gd<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>13</mml:mn></mml:msub></mml:math>cluster. Physical Review B, 2014, 89, .</mml:math_luster.>	3.2	26
283	Like Charges Attract?. Journal of Physical Chemistry Letters, 2016, 7, 2689-2695.	4.6	26
284	Bloch enhancement of the nuclear quadrupole interaction in aluminium alloys. Journal of Physics F: Metal Physics, 1975, 5, 1649-1662.	1.6	25
285	Theory of Electric Field Gradient Due to a Point Defect in a Cubic Metal. Physical Review Letters, 1981, 46, 610-614.	7.8	25
286	Structural properties of microcrystallites. Physical Review B, 1984, 30, 7293-7296.	3.2	25
287	Dynamics and instabilities near the glass transition: From clusters to crystals. Journal of Chemical Physics, 1998, 108, 234-239.	3.0	25
288	Atomic structure, binding energy, and magnetic properties of iron atoms supported on a polyaromatic hydrocarbon. Journal of Chemical Physics, 2003, 118, 8671-8680.	3.0	25

#	Article	IF	CITATIONS
289	Ferromagnetism inAl1â^'xCrxNthin films by density functional calculations. Physical Review B, 2006, 73, .	3.2	25
290	Unique magnetic coupling between Mn doped stannaspherenes Mn@Sn12. Applied Physics Letters, 2008, 92, .	3.3	25
291	N-doped ZnO thin films and nanowires: energetics, impurity distribution and magnetism. New Journal of Physics, 2009, 11, 063035.	2.9	25
292	First-principles study of hydrogen adsorption in metal-doped COF-10. Journal of Chemical Physics, 2010, 133, 154706.	3.0	25
293	Competition between surface chemisorption and cage formation in Fe12O12 clusters. Chemical Physics Letters, 2013, 556, 211-216.	2.6	25
294	Assembling Si ₂ BN nanoribbons into a 3D porous structure as a universal anode material for both Li- and Na-ion batteries with high performance. Nanoscale, 2020, 12, 19367-19374.	5.6	25
295	A 3D porous honeycomb carbon as Na-ion battery anode material with high capacity, excellent rate performance, and robust stability. Carbon, 2020, 168, 163-168.	10.3	25
296	Positron annihilation in metal-vacancy—hydrogen complexes. Physical Review B, 1981, 24, 2884-2887.	3.2	24
297	Electronic structure ofLiBeH3. Physical Review B, 1988, 38, 2380-2387.	3.2	24
298	Thermal stability and structural transition in Be microclusters. Physical Review B, 1992, 46, 7841-7845.	3.2	24
299	Reverse isotope effect on the superconductivity of PdH, PdD, and PdT. Solid State Communications, 1995, 94, 549-553.	1.9	24
300	Magnetic bistability of supported Mn clusters. Surface Science, 1997, 384, L892-L895.	1.9	24
301	Theoretical study of C ₆₀ as catalyst for dehydrogenation in LiBH ₄ . Nanotechnology, 2011, 22, 335401.	2.6	24
302	Structure and Properties of Egyptian Blue Monolayer Family: $XCuSi < sub > 4 < / sub > 0 < sub > 10 < / sub > (X =) Tj ETQq(x = 1) Tj ETQq(x$	0	/Qyerlock 10
303	Role of ligands in the stability of B _n X _n and CB _{n$\hat{1}$} X _n (n = 5 $\hat{1}$ (n = 5 $\hat{1}$ 5 $\hat{1}$ (n = 5 $\hat{1}$ 5 $\hat{1}$ (n = 5 $\hat{1}$ 6 $\hat{1}$ (n = 6 $\hat{1}$	2.8	24
304	Lattice Dynamic and Instability in Pentasilicene: A Light Single-Element Ferroelectric Material With High Curie Temperature. Physical Review Applied, 2019, 11, .	3.8	24
305	Conserved Vibrational Coherence in the Ultrafast Rearrangement of 2-Nitrotoluene Radical Cation. Journal of Physical Chemistry A, 2019, 123, 1140-1152.	2.5	24
306	Isotope Effect on the Electronic Spin Density in PdH Superconductor. Physical Review Letters, 1978, 40, 578-581.	7.8	23

#	Article	IF	CITATIONS
307	Dilute magnetic Ill–V semiconductor spintronics materials: A first-principles approach. Computational Materials Science, 2006, 36, 84-90.	3.0	23
308	Cluster-Inspired Design of High-Capacity Anode for Li-Ion Batteries. ACS Energy Letters, 2016, 1, 202-208.	17.4	23
309	Colossal Stability of Gasâ€Phase Trianions: Superâ€Pnictogens. Angewandte Chemie - International Edition, 2017, 56, 13421-13425.	13.8	23
310	Electronic and Nuclear-Magnetic-Resonance Properties of the Liquid Metals. Physical Review B, 1972, 6, 2131-2138.	3.2	22
311	Theory of spin polarization around an interstitial positive muon in ferromagnetic materials. Solid State Communications, 1976, 19, 45-48.	1.9	22
312	Positron annihilation in helium- and krypton-decorated microvoids in fcc metals. Physical Review B, 1985, 31, 5634-5641.	3.2	22
313	Hole trapping in LixNi1-xO. Journal of Physics Condensed Matter, 1990, 2, 10371-10377.	1.8	22
314	Assembling Crystals from Clusters. Physical Review Letters, 1993, 71, 208-208.	7.8	22
315	Magnetism of Al-Mn quasicrystals. Physical Review B, 1993, 48, 1295-1298.	3.2	22
316	Optically induced magnetism in cobalt iron cyanide. Physical Review B, 1998, 58, 14131-14134.	3.2	22
317	Chemisorption of atomic and molecular oxygen on Au and Ag cluster anions: discrimination of different isomers. Chemical Physics Letters, 2004, 396, 69-74.	2.6	22
318	Hydrogen Storage in Organometallic Structures Grafted on Silsesquioxanes. Chemistry of Materials, 2007, 19, 3074-3078.	6.7	22
319	Al13Hâ^: Hydrogen atom site selectivity and the shell model. Journal of Chemical Physics, 2009, 131, 121103.	3.0	22
320	Unique Spectroscopic Signature of Nearly Degenerate Isomers of Au(CN) ₃ Anion. Journal of Physical Chemistry Letters, 2011, 2, 3027-3031.	4.6	22
321	Interactions of a Mn atom with halogen atoms and stability of its half-filled 3d-shell. Journal of Chemical Physics, 2011, 134, 234311.	3.0	22
322	Functionalized Boranes for Hydrogen Storage. ChemPhysChem, 2012, 13, 300-304.	2.1	22
323	Unusual Magnetic Properties of Functionalized Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2013, 4, 2482-2488.	4.6	22
324	Structure, Stability, and Property Modulations of Stoichiometric Graphene Oxide. Journal of Physical Chemistry C, 2013, 117, 1064-1070.	3.1	22

#	Article	IF	Citations
325	Porphyrin-based porous sheet: Optoelectronic properties and hydrogen storage. International Journal of Hydrogen Energy, 2015, 40, 3689-3696.	7.1	22
326	A Theoretical and Mass Spectrometry Study of Dimethyl Methylphosphonate: New Isomers and Cation Decay Channels in an Intense Femtosecond Laser Field. Journal of Physical Chemistry A, 2017, 121, 8414-8424.	2.5	22
327	Co-mixing hydrogen and methane may double the energy storage capacity. Journal of Materials Chemistry A, 2018, 6, 8916-8922.	10.3	22
328	Electronic structure of hydrogen-like impurities in nearly-free-electron metals. Hyperfine Interactions, 1979, 6, 5-14.	0.5	21
329	Electronically induced trapping of hydrogen by impurities in niobium. Physical Review B, 1984, 30, 1065-1068.	3.2	21
330	Hydrogen and deuterium decoration of In-vacancy complexes in nickel. Physical Review B, 1987, 35, 6059-6063.	3.2	21
331	Ab initiostudy of ferromagnetism inGa1â^'xCrxNthin films. Physical Review B, 2005, 72, .	3.2	21
332	Ti-doped nano-porous graphene: A material for hydrogen storage and sensor. Frontiers of Physics, 2011, 6, 204-208.	5.0	21
333	Density functional study of neutral and anionic AlO <i>_n</i> and ScO <i>_n</i> with high oxygen content. Journal of Computational Chemistry, 2011, 32, 2974-2982.	3.3	21
334	Interpenetrating silicene networks: A topological nodal-line semimetal with potential as an anode material for sodium ion batteries. Physical Review Materials, $2018, 2, .$	2.4	21
335	Effect of Core Polarization on Knight Shift and Relaxation Time in Metallic Cadmium. Physical Review B, 1970, 1, 1160-1165.	3.2	20
336	Nonlinear electron-density distribution around point defects in simple metals. I. Formulation. Physical Review B, 1978, 18, 2712-2722.	3.2	20
337	Molecular view of the interfacial adhesion in aluminumâ€silicon carbide metalâ€matrix composites. Applied Physics Letters, 1990, 57, 2308-2310.	3.3	20
338	Structural isomerism of niobium clusters and its role on reactivity. Chemical Physics Letters, 1996, 259, 588-592.	2.6	20
339	Isomerism of Ni cluster anions and its role on photo-detachment spectroscopy. Chemical Physics Letters, 1997, 281, 401-406.	2.6	20
340	Photodecomposition of MnO4-: A Theoretical Study. Journal of Physical Chemistry A, 1999, 103, 10819-10824.	2.5	20
341	Ab initiostudy of electronic and magnetic properties of the C-codopedGa1â^'xMnxN($101\hat{A}^-0$)surface. Physical Review B, 2007, 75, .	3.2	20
342	Structural Patterns in Carbon Chemisorption on an Icosahedral 2 Iron Cluster. Journal of Physical Chemistry C, 2012, 116, 7050-7061.	3.1	20

#	Article	IF	Citations
343	Pressure-Induced Magnetic Crossover Driven by Hydrogen Bonding in CuF2(H2O)2(3-chloropyridine). Scientific Reports, 2014, 4, 6054.	3.3	20
344	Heat of solution of hydrogen in Al and Mg. Physical Review B, 1978, 17, 1592-1595.	3.2	19
345	Electronically driven magnetic transition and dimensionality crossover in Li4 clusters. Chemical Physics Letters, 1985, 121, 202-204.	2.6	19
346	Structural and electronic properties of compound metal clusters. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1986, 3, 219-222.	1.0	19
347	Physics of cluster assembled materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 217-218, 218-222.	5.6	19
348	Comment on "Fully Coordinated Silica Nanoclusters:(SiO2)NMolecular Rings― Physical Review Letters, 2004, 92, 039601; author reply 039602.	7.8	19
349	Photoelectron spectroscopic and theoretical studies of Femâ°'(coronene)n (m=1,2, n=1,2) complexes. Journal of Chemical Physics, 2008, 129, 074313.	3.0	19
350	Interaction of gas molecules with Ti-benzene complexes. Journal of Chemical Physics, 2008, 129, 074305.	3.0	19
351	Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior. Chemical Physics Letters, 2010, 498, 56-62.	2.6	19
352	Super and hyperhalogen behavior in MgX n and GdX n (XÂ=ÂF, BF4) clusters. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	19
353	Structure, stability and superhalogen properties of sodium and magnesium borohydrides. Chemical Physics Letters, 2013, 556, 173-177.	2.6	19
354	Alanate Anion, AlH ₄ ^{â€"} : Photoelectron Spectrum and Computations. Journal of Physical Chemistry A, 2014, 118, 8158-8162.	2.5	19
355	Giant magnetocrystalline anisotropy of 5d transition metal-based phthalocyanine sheet. Physical Chemistry Chemical Physics, 2015, 17, 17182-17189.	2.8	19
356	Giant Valley Splitting and Valley Polarized Plasmonics in Group V Transition-Metal Dichalcogenide Monolayers. Journal of Physical Chemistry Letters, 2017, 8, 5764-5770.	4.6	19
357	Hydrogenated C ₆₀ as High-Capacity Stable Anode Materials for Li Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6453-6460.	5.1	19
358	Stable Tetra―and Pentaâ€Anions in the Gas Phase. Angewandte Chemie - International Edition, 2019, 58, 11248-11252.	13.8	19
359	A family of ionic supersalts with covalent-like directionality and unconventional multiferroicity. Nature Communications, 2021, 12, 1331.	12.8	19
360	Built-in electric field control of magnetic coupling in van der Waals semiconductors. Physical Review B, $2021,103,$.	3.2	19

#	Article	IF	Citations
361	Effect of zero point motion on the hyperfine field at an interstitial positive muon site in ferromagnetic Ni. Solid State Communications, 1979, 31, 1003-1007.	1.9	18
362	Distribution of electric field gradients around impurities in aluminum. Hyperfine Interactions, 1984, 20, 65-117.	0.5	18
363	Modelling of metal clusters as fragments of crystalline solids. Journal of Physics F: Metal Physics, 1986, 16, 461-472.	1.6	18
364	DESIGNING CLUSTERS AS SUPERELEMENTS. Surface Review and Letters, 1996, 03, 993-999.	1.1	18
365	Magnetism of free and supported vanadium clusters. Journal of Physics Condensed Matter, 1997, 9, 10739-10748.	1.8	18
366	Magnetic moment and photo-detachment spectroscopy of Ni5 clusters. Chemical Physics Letters, 2001, 336, 467-472.	2.6	18
367	Anisotropy and Transport Properties of Tubular C-BN Janus Nanostructures. Journal of Physical Chemistry C, 2011, 115, 23978-23983.	3.1	18
368	Magnetism of two-dimensional triangular nanoflake-based kagome lattices. New Journal of Physics, 2012, 14, 033043.	2.9	18
369	Evolution of superhalogen properties in PtCln clusters. Journal of Chemical Physics, 2012, 136, 194305.	3.0	18
370	Electron affinity of modified benzene. International Journal of Quantum Chemistry, 2018, 118, e25504.	2.0	18
371	Heavily Tungstenâ€Doped Sodium Thioantimonate Solidâ€State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. Angewandte Chemie - International Edition, 2021, 60, 26158-26166.	13.8	18
372	Theory of Hyperfine Properties of Liquid Metals â€" Application to Cadmium. Physical Review B, 1971, 3, 2158-2168.	3.2	17
373	Magnetic hyperfine structure of 125Te in ferromagnetic Pd2MnSb. Physics Letters, Section A: General, Atomic and Solid State Physics, 1975, 54, 293-294.	2.1	17
374	Nonlinear electron-density distribution around point defects in simple metals. II. Applications. Physical Review B, 1978, 18, 2723-2732.	3.2	17
375	Role of elastic and electronic interactions in trapping of hydrogen by impurities in transition metals. Physical Review B, 1985, 31, 7612-7616.	3.2	17
376	Band structures of solids composed of metal clusters. Solid State Communications, 1993, 85, 11-14.	1.9	17
377	Signature of crystalline order in ultra-small metal-oxide clusters. Chemical Physics Letters, 1998, 288, 253-260.	2.6	17
378	Structure and magnetic ordering in Cr8 and Cr13 clusters. Physical Review B, 1999, 60, 15597-15600.	3.2	17

#	Article	IF	CITATIONS
379	Mg-doped GaN nanostructures: Energetics, magnetism, and H2 adsorption. Applied Physics Letters, 2009, 94, 013108.	3.3	17
380	Atomic Clusters: Opportunities in the Face of Challenges. Journal of Physical Chemistry Letters, 2015, 6, 1549-1552.	4.6	17
381	Dissociation dynamics of 3- and 4-nitrotoluene radical cations: Coherently driven C–NO2 bond homolysis. Journal of Chemical Physics, 2018, 148, 134305.	3.0	17
382	Bipolar Magnetic Materials Based on 2D Ni[TCNE] Metal–Organic Coordination Networks. Advanced Electronic Materials, 2018, 4, 1700323.	5.1	17
383	Effect of zero-point motion on the superconducting transition temperature of PdH(D). Physical Review B, 1984, 29, 4140-4143.	3.2	16
384	Comment on   Charge exchange and metastability of small multiply charged gold clusters''. Physical Review Letters, 1990, 64, 1188-1188.	7.8	16
385	Charge-state stability of Ni and Cu impurities in MgO. Physical Review B, 1990, 42, 1156-1162.	3.2	16
386	Electronic structure of light metal hydrides. Physical Review B, 1997, 55, 1454-1458.	3.2	16
387	Metastability of a gold nanoring: Density-functional calculations. Physical Review B, 2004, 70, .	3.2	16
388	First-principles study of ferromagnetic coupling in Zn1â^'xCrxTe thin film. Journal of Applied Physics, 2005, 97, 043904.	2.5	16
389	Intermediate Phases during Decomposition of Metal Borohydrides, M(BH ₄) _{<i>n</i>} (M = Na, Mg, Y). Journal of Physical Chemistry C, 2014, 118, 28456-28461.	3.1	16
390	Unusual stability of multiply charged organo-metallic complexes. RSC Advances, 2015, 5, 44003-44008.	3.6	16
391	Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO ₂ thin film. Nanoscale, 2016, 8, 11202-11209.	5.6	16
392	Role of Effective Mass in Interpreting the Knight Shift in Cadmium upon Melting. Physical Review Letters, 1971, 26, 1024-1027.	7.8	15
393	Jahn-Teller Distortion, Hund's Coupling and Metastability in Alkali Tetramers. , 1987, , 435-438.		15
394	Simple theory of electronic structure: Clusters to crystals. Physical Review B, 1988, 38, 5760-5763.	3.2	15
395	Electronic Shell Structure and the Crystal Field Splitting in Simple Metals Clusters. Europhysics Letters, 1991, 14, 643-648.	2.0	15
396	Magnetic excitations of Co2 dimer. Chemical Physics Letters, 2001, 345, 481-489.	2.6	15

#	Article	IF	CITATIONS
397	Interaction of magic gold cluster with Si \$_mathsf{60}\$ cage. European Physical Journal D, 2004, 29, 231-234.	1.3	15
398	Anomalous Property of Ag(BO ₂) ₂ Hyperhalogen: Does Spin–Orbit Coupling Matter?. ChemPhysChem, 2013, 14, 3303-3308.	2.1	15
399	Mass spectrometry and its role in advancing cluster science. International Journal of Mass Spectrometry, 2015, 377, 235-247.	1.5	15
400	Atomic-Level Design of Water-Resistant Hybrid Perovskites for Solar Cells by Using Cluster Ions. Journal of Physical Chemistry Letters, 2017, 8, 3726-3733.	4.6	15
401	Atomic relaxations around vacancy clusters in molybdenum and their effects on trapped-positron lifetime. Physical Review B, 1988, 37, 6-11.	3.2	14
402	Electronic structure of theLiMgH3class of compounds: Cluster calculations. Physical Review B, 1991, 44, 6030-6036.	3.2	14
403	Screening of a Positive Muon by a Semion Gas. International Journal of Modern Physics B, 1991, 05, 1579-1588.	2.0	14
404	Soft breakdown of an insulating nanowire in an electric field. Nanotechnology, 2004, 15, 260-263.	2.6	14
405	On the structural and energetic properties of the hydrogen absorber Li2Mg(NH)2. Applied Physics Letters, 2007, 91, 091924.	3.3	14
406	Li- and B-decorated cis-polyacetylene: A computational study. Physical Review B, 2008, 77, .	3.2	14
407	Pressure-Induced Local Structure Distortions in Cu(pyz)F2(H2O)2. Inorganic Chemistry, 2011, 50, 6347-6352.	4.0	14
408	Stability and Spectroscopic Properties of Singly and Doubly Charged Anions. Journal of Physical Chemistry A, 2012, 116, 5604-5617.	2.5	14
409	Origin of Red Shift in the Photoabsorption Peak in MEH–PPV Polymer. Journal of Physical Chemistry C, 2014, 118, 13444-13450.	3.1	14
410	Potential of porous nodal-line semi-metallic carbon for sodium-ion battery anode. Journal of Power Sources, 2020, 478, 228746.	7.8	14
411	Volume dependence of the magnetic properties of alkali metals. Journal of Physics F: Metal Physics, 1980, 10, 1567-1573.	1.6	13
412	Clusters—A new phase of matter. Phase Transitions, 1990, 24-26, 35-60.	1.3	13
413	Electronic structure of sub-stoichiometric iron aluminide clusters. Journal of Physics Condensed Matter, 2001, 13, 8363-8374.	1.8	13
414	Design of a heterostructure peapod using magic silicon clusters. Physical Review B, 2002, 66, .	3.2	13

#	Article	IF	CITATIONS
415	Stability and electronic structure of bilayer graphone. Applied Physics Letters, 2011, 98, .	3.3	13
416	Role of Ti-based catalysts in the dehydrogenation mechanism of magnesium borohydride: A cluster approach. International Journal of Hydrogen Energy, 2013, 38, 2357-2362.	7.1	13
417	Anisotropic Mo ₂ –Phthalocyanine Sheet: A New Member of the Organometallic Family. Journal of Physical Chemistry A, 2014, 118, 304-307.	2.5	13
418	Structure and Properties of Polyfluoride Fn– Clusters (n = 3–29). Journal of Physical Chemistry A, 2015, 119, 6483-6492.	2.5	13
419	A metallic peanut-shaped carbon nanotube and its potential for CO2 capture. Carbon, 2018, 132, 249-256.	10.3	13
420	Super-alkalis as building blocks of one-dimensional hierarchical electrides. Nanoscale, 2018, 10, 22963-22969.	5.6	13
421	Realization of the Zn ³⁺ oxidation state. Nanoscale, 2021, 13, 14041-14048.	5.6	13
422	Electron-hole liquid in heavily doped n-type ge and si. Journal of Physics C: Solid State Physics, 1975, 8, 1377-1386.	1.5	12
423	Temperature dependence of impurity resistivity due to hydrogen in metals. Solid State Communications, 1980, 34, 179-182.	1.9	12
424	Chemically induced changes in the magnetic moments in transition metal monomers and dimers. Chemical Physics Letters, 1998, 295, 175-180.	2.6	12
425	Two thermodynamically stable states inSiOâ^'andPNâ^'. Physical Review A, 1998, 58, 4972-4974.	2.5	12
426	Spectroscopic signature of magnetic bistability in Mn2O \hat{a} anions and its implications for piezomagnetism at the nanoscale. Physical Review B, 2004, 69, .	3.2	12
427	Identification of hyperhalogens in Ag _n (BO ₂) _m (n = 1 â \in "3, m = 1 â \in "2) clusters: anion photoelectron spectroscopy and density functional calculations. Physical Chemistry Chemical Physics, 2014, 16, 26067-26074.	2.8	12
428	Tuning magnetic properties of antiferromagnetic chains by exchange interactions: ab initio studies. Physical Chemistry Chemical Physics, 2015, 17, 26302-26306.	2.8	12
429	Knight-Shift Calculations in Liquid Magnesium. Physical Review B, 1971, 4, 711-717.	3.2	11
430	On the X-ray edge anomalies in Li. Journal of Physics F: Metal Physics, 1974, 4, L219-L222.	1.6	11
431	Theoretical study of the geometry of Mn5. International Journal of Quantum Chemistry, 1988, 34, 231-236.	2.0	11
432	Ferromagnetic to ferrimagnetic crossover in Cr-doped GaN nanohole arrays. Physical Review B, 2007, 75, .	3.2	11

#	Article	IF	Citations
433	Photoelectron spectroscopy and theoretical studies of $[Com(pyrene)n]\hat{a}$ (m=1,2 and n=1,2) complexes. Journal of Chemical Physics, 2008, 129, 134308.	3.0	11
434	Reaction-Induced Magnetic Transition in Mn ₂ Dimers. Journal of Physical Chemistry A, 2011, 115, 549-555.	2.5	11
435	Ferromagnetism in Two-Dimensional Carbon Chains Linked by 1,3,5-Benzenetriyl Units. Journal of Physical Chemistry C, 2011, 115, 19621-19625.	3.1	11
436	Electronic Structure and Stability of Mono- and Bimetallic Borohydrides and Their Underlying Hydrogen-Storage Properties: A Cluster Study. Journal of Physical Chemistry C, 2015, 119, 11056-11061.	3.1	11
437	Superhalogens beget superhalogens: a case study of (BO ₂) _n oligomers. Physical Chemistry Chemical Physics, 2015, 17, 26589-26593.	2.8	11
438	From Halogen to Superhalogen Behavior of Organic Molecules Created by Functionalizing Benzene. ChemPhysChem, 2016, 17, 184-189.	2.1	11
439	Ultrafast coherent vibrational dynamics in dimethyl methylphosphonate radical cation. Physical Chemistry Chemical Physics, 2018, 20, 4636-4640.	2.8	11
440	Effect of hydrogenation on the structure and magnetic properties of an iron oxide cluster. Physical Chemistry Chemical Physics, 2018, 20, 4546-4553.	2.8	11
441	Superhalogens as Building Blocks of Super Lewis Acids. ChemPhysChem, 2019, 20, 1607-1612.	2.1	11
442	Interfacial properties of penta-graphene-metal contacts. Journal of Applied Physics, 2019, 125, .	2.5	11
443	Theory-Guided Discovery of Novel Materials. Journal of Physical Chemistry Letters, 2021, 12, 6499-6513.	4.6	11
444	Temperature Dependence of Hardâ€Sphere Interference Functions. Journal of Chemical Physics, 1972, 57, 1830-1837.	3.0	10
445	Conduction-electron polarization in intermetallic actinide compounds. Physical Review B, 1978, 18, 3562-3567.	3.2	10
446	Effect of Symmetry Breaking on Hydrogen Site Preference in Small Metal Clusters. Physical Review Letters, 1984, 53, 2300-2303.	7.8	10
447	Molecular cluster calculations of the electronic structure of lithium hydride. Journal of Physics C: Solid State Physics, 1986, 19, 5167-5172.	1.5	10
448	Introduction to Atomic Clusters. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 2010, , 1-36.	0.6	10
449	Double exchange mediated ferromagnetic coupling between Co atoms in dicobalt complex. Applied Physics Letters, 2011, 99, 153105.	3.3	10
450	Hydrogen mimicking the properties of coinage metal atoms in Cu and Ag monohydride clusters. Physical Chemistry Chemical Physics, 2013, 15, 21007.	2.8	10

#	Article	IF	Citations
451	Self-assembly of metal atoms (Na, K, Ca) on graphene. Nanoscale, 2015, 7, 2352-2359.	5.6	10
452	Two-dimensional topological crystalline quantum spin Hall effect in transition metal intercalated compounds. Physical Review B, 2017, 95, .	3.2	10
453	Rational Design of Stable Dianions and the Concept of Super-Chalcogens. Journal of Physical Chemistry A, 2019, 123, 5753-5761.	2.5	10
454	Hex-C558: A new porous metallic carbon allotrope for lithium-ion battery anode. Carbon, 2021, 183, 652-659.	10.3	10
455	Equilibrium geometries of small metal clusters and their relationship to crystalline structure. Solid State Communications, 1985, 56, 731-734.	1.9	9
456	Nuclear quadrupole interaction due to point defects in aluminum: Effect of host lattice structure. Physical Review B, 1985, 31, 5680-5686.	3.2	9
457	Nature of short range interaction between deuterium atoms in Pd. Solid State Communications, 1989, 72, 891-894.	1.9	9
458	Limitation on the success of the jellium model for metal clusters. Chemical Physics Letters, 1991, 183, 333-336.	2.6	9
459	The origin of anomalous bond dissociation energies of V+ (H2)n clusters. Chemical Physics Letters, 1994, 230, 299-305.	2.6	9
460	Magnetic properties of transition metal superlattices. Journal of Magnetism and Magnetic Materials, 1994, 130, 255-260.	2.3	9
461	Design of new metal-free dyes for dye-sensitized solar cells: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2595-2599.	2.1	9
462	Doping induced magnetic transition in Mn-based molecular systems. Chemical Physics Letters, 2012, 525-526, 97-100.	2.6	9
463	Allâ€Metal Clusters that Mimic the Chemistry of Halogens. ChemPhysChem, 2013, 14, 3227-3232.	2.1	9
464	Investigation of hydrogen induced fluorescence in C ₆₀ and its potential use in luminescence down shifting applications. Nanoscale, 2016, 8, 18760-18770.	5.6	9
465	Discovery of a high-pressure phase of rutile-like CoO ₂ and its potential as a cathode material. Journal of Materials Chemistry A, 2018, 6, 18449-18457.	10.3	9
466	Two-dimensional metal-free boron chalcogenides $B \le 5 \le $	5.6	9
467	Boron-Functionalized Organic Framework as a High-Performance Metal-Free Catalyst for N ₂ Fixation. Journal of Physical Chemistry Letters, 2021, 12, 12142-12149.	4.6	9
468	Positron annihilation as a probe for impurities trapped by vacancy clusters. Physical Review B, 1982, 26, 5264-5267.	3.2	8

#	Article	IF	CITATIONS
469	Electron localization in anionic and cationic clusters. International Journal of Quantum Chemistry, 1988, 34, 287-296.	2.0	8
470	Charge-exchange reactions in metal clusters: Role of magic numbers. Physical Review B, 1989, 40, 966-969.	3.2	8
471	Clusters-a New Source for Atomically Engineered Materials. Materials Research Society Symposia Proceedings, 1990, 206, 3.	0.1	8
472	Dehydrogenation associated with Ti catalyst in sodium alanate. Journal of Physics and Chemistry of Solids, 2010, 71, 1073-1076.	4.0	8
473	Geometry, Electronic Properties, and Hydrogen Adsorption Properties of Li ₃ N-Based Nanostructures. Journal of Physical Chemistry C, 2010, 114, 19202-19205.	3.1	8
474	Communication: In search of four-atom chiral metal clusters. Journal of Chemical Physics, 2013, 139, 111101.	3.0	8
475	<mml:math< p=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NaNO</mml:mi><mml:mn>3 thermal conductivity insensitive to temperature. Physical Review Materials, 2022, 6, .</mml:mn></mml:msub></mml:math<>	ll:mn>2.4	ml;msub>
476	Pseudopotential Calculation of the Knight Shift and Relaxation Time in Magnesium. Physical Review B, 1970, 2, 2264-2267.	3.2	7
477	Momentum of a fast particle in a dissipative medium with an excitation threshold. Journal of Physics C: Solid State Physics, 1976, 9, 975-989.	1.5	7
478	On the feasibility of using positive muons as probes of defect structure. Solid State Communications, 1978, 27, 1249-1253.	1.9	7
479	I129magnetic hyperfine structure in the Heusler alloysPd2MnSb and PdMnSb. Physical Review B, 1978, 18, 3393-3399.	3.2	7
480	Charge densities, interionic potentials and phonon frequencies in Al. Journal of Physics F: Metal Physics, 1984, 14, 2017-2025.	1.6	7
481	Theory of hydrogen pairing in metals. Journal of the Less Common Metals, 1991, 172-174, 485-495.	0.8	7
482	The Role of Interface on the Properties of Cluster Assemblies. Journal of Cluster Science, 2001, 12, 443-456.	3.3	7
483	Geometry and energetics of Si60isomers. Science and Technology of Advanced Materials, 2003, 4, 361-365.	6.1	7
484	Binding of Butadiene Molecules Mediated by Ni Atom and Ni+Ion. Journal of Physical Chemistry A, 2004, 108, 5234-5241.	2.5	7
485	18-Electron rule inspired Zintl-like ions composed of all transition metals. Physical Chemistry Chemical Physics, 2014, 16, 20241-20247.	2.8	7
486	Valley contrasting in epitaxial growth of In/Tl homoatomic monolayer with anomalous Nernst conductance. Physical Review B, 2016, 94, .	3.2	7

#	Article	IF	CITATIONS
487	Assembling π-Conjugated Molecules with Negative Gaussian Curvature for Efficient Carbon-Based Metal-Free Thermoelectric Material. Journal of Physical Chemistry C, 2016, 120, 27829-27833.	3.1	7
488	Pressure-induced structural transition in copper pyrazine dinitrate and implications for quantum magnetism. Physical Review B, 2016, 93, .	3.2	7
489	Designing New Metal Chalcogenide Nanoclusters through Atomâ€byâ€Atom Substitution. Small, 2021, 17, e2002927.	10.0	7
490	Robustness of Superatoms and Their Potential as Building Blocks of Materials: Al ₁₃ [–] vs B(CN) ₄ [–] . Journal of Physical Chemistry C, 2020, 124, 6435-6440.	3.1	7
491	Physics of Clusters and Cluster Assemblies. Springer Series in Cluster Physics, 1999, , 27-53.	0.3	7
492	Record-high stability and compactness of multiply-charged clusters aided by selected terminal groups. Physical Chemistry Chemical Physics, 2020, 22, 4880-4883.	2.8	7
493	Systematics in the Knight shift of rare-earth monopnictides. Physical Review B, 1978, 17, 1-5.	3.2	6
494	Ab initiocalculation of the temperature dependence of the electric field gradient in Be. Physical Review B, 1981, 23, 3823-3827.	3.2	6
495	Effect of crystal potential on electric field gradient calculations due to impurities in cubic metals. Solid State Communications, 1984, 52, 411-415.	1.9	6
496	Reaction-induced excitations of clusters. Chemical Physics Letters, 1990, 171, 439-442.	2.6	6
497	Photoelectron spectroscopic study of iron-pyrene cluster anions. Journal of Chemical Physics, 2011, 135, 204301.	3.0	6
498	Adsorption of oxygen-containing functional groups on free and supported graphene using point contact. Physical Review B, 2012, 85, .	3.2	6
499	Magnetic hollow cages with colossal moments. Journal of Chemical Physics, 2013, 139, 044301.	3.0	6
500	Strain and carrier-induced coexistence of topologically insulating and superconducting phase in iodized Si(111) films. Nano Research, 2016, 9, 1578-1589.	10.4	6
501	Colossal Stability of Gasâ€Phase Trianions: Superâ€Pnictogens. Angewandte Chemie, 2017, 129, 13606-13610.	2.0	6
502	Ligand stabilization of manganocene dianions $\hat{a}\in$ " in defiance of the 18-electron rule. Physical Chemistry Chemical Physics, 2019, 21, 24300-24307.	2.8	6
503	A high-pressure induced stable phase of Li ₂ MnSiO ₄ as an effective poly-anion cathode material from simulations. Journal of Materials Chemistry A, 2019, 7, 16406-16413.	10.3	6
504	Electronic Structure of Point Defects in Metals. Treatise on Materials Science and Technology, 1981, 21, 351-425.	0.1	6

#	Article	IF	CITATIONS
505	Organoâ^'Zintl-based superatoms: [Ge9(CHO)3] and [Ge9(CHO)]. Chemical Physics Letters, 2017, 686, 195-202.	2.6	6
506	SbCl ₄ : An Exceptional Superhalogen as the Building Block of a Mixed Valence Supercrystal with Unconventional Ferroelectricity. Journal of Physical Chemistry Letters, 2022, 13, 1049-1056.	4.6	6
507	Exchange Core-Polarization Contribution to the Spin Density in Liquid Metals. Physical Review B, 1971, 4, 2385-2392.	3.2	5
508	Temperature dependence of electric field gradient and Knight shift in Mg. Physical Review B, 1978, 17, 1046-1051.	3.2	5
509	Self-consistent calculation of hyperfine fields at impurity sites in ferromagnetic host. Physical Review B, 1980, 22, 2411-2419.	3.2	5
510	Evidence for magnetically induced electronic and phonon anomalies in cubic Pd2MnSn (Mossbauer) Tj ETQq0 0	0 rgBT /0\	verlock 10 Tf !
511	Self-consistent phonon approach to thermal vibrations in model small clusters. Physical Review B, 1989, 40, 2459-2463.	3 . 2	5
512	Geometries and binding energies of small beryllium clusters using various levels of approximations for exchange and correlation: a comparative study. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1991, 18, 171-174.	1.0	5
513	Stability of clusters in two dimensions. Physical Review B, 1993, 48, 14702-14705.	3.2	5
514	Mechanochemically driven nonequilibrium processes in MNH2–CaH2 systems (M=Li or Na). Journal of Alloys and Compounds, 2010, 506, 224-230.	5 . 5	5
515	C ₆₀ -mediated hydrogen desorption in Li–N–H systems. Nanotechnology, 2012, 23, 485406.	2.6	5
516	Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	5
517	Electronic and magnetic properties of pristine and transition metal doped ZnTe nanowires. Journal of Physics Condensed Matter, 2013, 25, 266003.	1.8	5
518	Giant magnetic moments of B and C doped cuboctahedral Mn13 clusters. Nanoscale, 2013, 5, 2114.	5 . 6	5
519	B(SCN) ₄ [–] : A New Weakly Coordinating Anion in the Tetracyanoborate Family. Journal of Physical Chemistry C, 2018, 122, 13371-13375.	3.1	5
520	Role of Size and Composition on the Design of Superalkalis. Journal of Physical Chemistry A, 2021, 125, 5886-5894.	2.5	5
521	Binding of noble gas atoms by superhalogens. Journal of Chemical Physics, 2021, 155, 014304.	3.0	5
522	Super-electrophiles of tri- and tetra-anions stabilized by selected terminal groups and their role in binding noble gas atoms. Physical Chemistry Chemical Physics, 2021, 23, 21496-21500.	2.8	5

#	Article	IF	Citations
523	Interfacial triferroicity in monolayer chromium dihalide. Physical Review B, 2022, 105, .	3.2	5
524	Effects of Temperature on the Magnetic Hyperfine Properties of Beryllium. Physical Review B, 1971, 4, 3931-3934.	3.2	4
525	Muon states in uniaxially strained iron. Physical Review B, 1984, 29, 4170-4172.	3.2	4
526	Hartree-Fock interaction between a helium atom and lithium metal: A test for the effective medium theory. Solid State Communications, 1985, 55, 725-727.	1.9	4
527	AB initio studies of the electronic structure of micro-clusters. Ultramicroscopy, 1986, 20, 51-54.	1.9	4
528	Energetics, electronic structure, and positron annihilation studies of carbon-vacancy complexes in iron. European Physical Journal B, 1990, 81, 281-289.	1.5	4
529	Energetics and electronic structure of In on a Cu(100) surface. Physical Review B, 1990, 41, 4930-4937.	3.2	4
530	Effect of size and dimensionality on the magnetic moment of transition metals. Journal of Applied Physics, 1990, 67, 4484-4486.	2.5	4
531	Comment on â€~â€~Patterns and barriers for fission of charged small metal clusters''. Physical Review Letters, 1992, 69, 1471-1471.	7.8	4
532	Interplanar relaxation at the (0001) surface of Be. Surface Science, 1993, 289, L614-L616.	1.9	4
533	Effect of atomic relaxation on the magnetic moment of Fe, Co, and Ni dimers supported on Cu(001). Surface Science, 2001, 491, 219-225.	1.9	4
534	First-principles study of the effect of vacancies on magnetic properties of Zn _{1 \hat{a}°<i>>×</i>} Co _{<i>×</i>} O thin films. Journal of Physics Condensed Matter, 2010, 22, 076002.	1.8	4
535	Tuning magnetic properties of Mn4 cluster with gold coating. Physical Chemistry Chemical Physics, 2010, 12, 1493.	2.8	4
536	Receptor–Ligand Interaction at 5-HT3 Serotonin Receptors: A Cluster Approach. Journal of Physical Chemistry A, 2014, 118, 8471-8476.	2.5	4
537	Substituentâ€Stabilized Organic Dianions in the Gas Phase and Their Potential Use as Electrolytes in Lithiumâ€Ion Batteries. ChemPhysChem, 2016, 17, 2992-2997.	2.1	4
538	Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium intercalated gallium film. Applied Physics Letters, 2016, 108, 253102.	3.3	4
539	Magnetic properties of bimetallic clusters composed of Gd and transition metals. Journal of Applied Physics, 2016, 119, 074301.	2.5	4
540	Recent advances in 2D thermoelectric materials. Proceedings of SPIE, 2016, , .	0.8	4

#	Article	IF	CITATIONS
541	Effect of Coulomb Correlation on the Magnetic Properties of Mn Clusters. Journal of Physical Chemistry A, 2018, 122, 4350-4356.	2.5	4
542	Unique reactivity of B in B[Ge ₉ Y ₃] ₃ (Y = H, CH ₃ , BO,) Tj ETC	Qq Q.Q 0 rg	gBT ₄ Overlock
543	Clusters and Nanomaterials for Sustainable Energy. ACS Energy Letters, 2020, 5, 428-429.	17.4	4
544	Imidazole-graphyne: a new 2D carbon nitride with a direct bandgap and strong IR refraction. Physical Chemistry Chemical Physics, 2021, 23, 10274-10280.	2.8	4
545	Signature of Au as a Halogen. Journal of Physical Chemistry Letters, 0, , 4721-4728.	4.6	4
546	Nonlocal pseudopotential theory of electron transport in liquid metals. Physical Review B, 1976, 14, 2422-2426.	3.2	3
547	Cluster calculations of the interactions of $\hat{l}\frac{1}{4}$ + with lattice defects in Li. Hyperfine Interactions, 1984, 17, 247-253.	0.5	3
548	Magnetism and local order. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1989, 12, 361-363.	1.0	3
549	Liuet al. reply. Physical Review Letters, 1990, 65, 1169-1169.	7.8	3
550	Energetics and electronic structure of hydrogenated clusters. Journal of the Less Common Metals, 1991, 172-174, 387-394.	0.8	3
551	CLUSTERS WITH NOVEL PROPERTIES. International Journal of Modern Physics B, 1992, 06, 3657-3666.	2.0	3
552	Quantum diffusion of muonium in the alkali halides. Physical Review B, 1995, 51, 15879-15884.	3.2	3
553	Stabilizing a 22 karat nanogolden cage. Journal of Chemical Physics, 2009, 131, 204501.	3.0	3
554	Clusters. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 2010, , 37-70.	0.6	3
555	Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters. Physica B: Condensed Matter, 2011, 406, 4322-4326.	2.7	3
556	Structural, electronic and magnetic properties of neutral and anionic Fe2(BO2) (<mml:math) 0="" 2014,="" 2959-2964.<="" 378,="" a:="" and="" atomic="" clusters.="" etqq0="" general,="" letters,="" physics="" physics,="" rgbt="" section="" solid="" state="" td="" tj=""><td>/Overlock 2.1</td><td>10 Tf 50 152 3</td></mml:math)>	/Overlock 2.1	10 Tf 50 152 3
557	Rational Design of Stable Dianions by Functionalizing Polycyclic Aromatic Hydrocarbons. ChemPhysChem, 2017, 18, 1937-1942.	2.1	3
558	Boronated holey graphene: a case of 2D ferromagnetic metal. Physical Chemistry Chemical Physics, 2019, 21, 21128-21135.	2.8	3

#	Article	IF	CITATIONS
559	Structure of Homo- and Hetero-Nuclear Micro-Clusters. , 1987, , 369-382.		3
560	Metallo-boranes: a class of unconventional superhalogens defying electron counting rules. Nanoscale, 2022, 14, 1767-1778.	5.6	3
561	Atomically Precise Core-Tailored Metal Chalcogenide Nanoclusters: Tuning the Electronic Structure and Magnetic Properties. Journal of Physical Chemistry C, 2022, 126, 6512-6522.	3.1	3
562	Rational Design of Endohedral Superhalogens without Using Metal Cations and Electron Counting Rules. Journal of Physical Chemistry A, 0, , .	2.5	3
563	Halide sublattice dynamics drive Li-ion transport in antiperovskites. Journal of Materials Chemistry A, 2022, 10, 15731-15742.	10.3	3
564	Isotope Effect on The Electronic Structure of Hydrogen in Metals. Materials Research Society Symposia Proceedings, 1980, 3, 547.	0.1	2
565	Theory of impurity hyperfine field systematics in ferromagnetic hosts. Hyperfine Interactions, 1981, 9, 405-408.	0.5	2
566	Novel phenomenon in charged clusters. Scripta Materialia, 1992, 1, 137-142.	0.5	2
567	Kiran <i>etÂal.</i> Reply:. Physical Review Letters, 2008, 100, .	7.8	2
568	Doping induced anisotropic growth in C[sub 60]. Journal of Chemical Physics, 2009, 130, 184714.	3.0	2
569	Interaction of C59Si with Si based clusters: a study of Janus nanostructures. Journal of Physics Condensed Matter, 2010, 22, 275303.	1.8	2
570	LiFe2Cln (n = 4–6) clusters: Double-exchange mediated molecular magnets. Applied Physics Letters, 20, 105, 163112.	0134	2
571	Catalytic activities of platinum nanotubes: a density functional study. European Physical Journal B, 2015, 88, 1.	1.5	2
572	B2H6 splitting on catalytic surfaces and role of BH3 towards hydrogen spillover. Journal of Power Sources, 2020, 455, 227973.	7.8	2
573	Heavily Tungstenâ€Doped Sodium Thioantimonate Solidâ€State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. Angewandte Chemie, 2021, 133, 26362-26370.	2.0	2
574	Electronic Structure and Properties of Small Be-Clusters. , 1987, , 431-434.		2
575	Superatomic chemistry. Journal of the Indian Chemical Society, 2022, 99, 100350.	2.8	2
576	Halogen-Free Electrolytes Based on Modified Boranes for Alkali-lon Batteries. Journal of Physical Chemistry C, 2022, 126, 5112-5121.	3.1	2

#	Article	IF	CITATIONS
577	Positive muon as a probe of magnetization density in ferromagnetic metal vacancies. Physics Letters, Section A: General, Atomic and Solid State Physics, 1977, 60, 50-52.	2.1	1
578	Theory of fractional Knight shift in liquid binary alloys. Physical Review B, 1984, 30, 6826-6833.	3.2	1
579	Role of excess electrons on the stability of metal-cluster hydrides. Physical Review B, 1992, 45, 13631-13635.	3.2	1
580	Interplanar relaxation at the (0001) surface of Be. Surface Science Letters, 1993, 289, L614-L616.	0.1	1
581	Electronic Structure and Hydrogen Desorption in NaAlH ₄ . Materials Research Society Symposia Proceedings, 2004, 837, 31.	0.1	1
582	Interaction of Pd and PdCl2 with Cellulose: A Theoretical Investigation. Journal of Physical Chemistry B, 2005, 109, 23655-23660.	2.6	1
583	Global Views on Advancing Renewable Energies. MRS Bulletin, 2008, 33, 824-825.	3.5	1
584	Probing the existence of energetically degenerate cluster isomers by chemical tagging. Applied Physics Letters, 2010, 97, 223104.	3.3	1
585	Electrical transition of (3,3) carbon nanotube on patterned hydrogen terminated Si(001)-2 × 1 driven lelectric field. Journal of Applied Physics, 2012, 111, 123717.	by _{2.5}	1
586	Potential of ZrO clusters as replacement Pd catalyst. Journal of Chemical Physics, 2014, 141, 034301.	3.0	1
587	Many faces of carbon. Proceedings of SPIE, 2016, , .	0.8	1
588	Collective Superexchange and Exchange Coupling Constants in the Hydrogenated Iron Oxide Particle Fe ₈ O ₁₂ H ₈ . Journal of Physical Chemistry A, 2018, 122, 5043-5049.	2.5	1
589	Homocoupling and Heterocoupling of Grignard Perfluorobenzene Reagents via Aryne Intermediates: A DFT Study. Journal of Physical Chemistry A, 2019, 123, 9693-9700.	2.5	1
590	Direct Evidence for Interstitial and Vacancy-Associated Hydrogen Trapping Near Impurity Atoms in F.C.C. Metals., 1983,, 567-579.		1
591	Magnetism of Finite Systems: From Clusters to Crystals. , 1992, , 709-720.		1
592	METAL-BENZENE COMPLEXES WITH INSERTED METAL ATOMS AND THE POSSIBILITY OF GENERATING MAGNETIC NI-BENZENE CLUSTERS. , 2005, , .		1
593	Interaction of Clusters with Substrates. , 1992, , 1065-1070.		1
594	Screening of an Atomic Impurity in Electron Liquid. Journal of the Physical Society of Japan, 1981, 50, 2413-2416.	1.6	1

#	Article	IF	Citations
595	Theoretical study of muon-induced solitons in polyacetylene. Physical Review B, 1990, 42, 3052-3056.	3.2	0
596	ab-initio tight-binding theory for the electronic structure. Journal of Non-Crystalline Solids, 1990, 117-118, 297-299.	3.1	0
597	Simulation of muonium quantum diffusion including self-consistent electronic structure in alkali halides. Radiation Effects and Defects in Solids, 1991, 119-121, 593-594.	1.2	0
598	Magnetic Behavor of clusters of transition metals., 0, , .		0
599	Niu, Rao, and Jena reply. Physical Review Letters, 1993, 70, 3837-3837.	7.8	0
600	Design of High-Energetic Materials at the Nanoscale. Materials Research Society Symposia Proceedings, 2003, 800, 259.	0.1	0
601	Anomalous Behavior of Atomic Hydrogen Interacting with Gold Clusters ChemInform, 2004, 35, no.	0.0	0
602	Electric field-induced metallic transition of (3,3) carbon nanotube supported on patterned hydrogen-terminated Si(001):1Â×Â1 surface. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	0
603	Chainâ€like structures of gold supported by silicon substrate. Physica Status Solidi (B): Basic Research, 2014, 251, 924-932.	1.5	0
604	Two-dimensional topological nanomaterials and related Hall effects. , 2016, , .		0
605	Changes in the photo-absorption spectrum of MEH-PPV in solution. , 2016, , .		0
606	Assembling a bi-coordinated Cr complex for ferromagnetic nanorings: insight from first-principles calculations. Physical Chemistry Chemical Physics, 2016, 18, 17868-17874.	2.8	0
607	Stable Tetra―and Pentaâ€Anions in the Gas Phase. Angewandte Chemie, 2019, 131, 11370-11374.	2.0	0
608	Stable Tetra―and Pentaâ€Anions in the Gas Phase. Angewandte Chemie, 2019, 131, 11246.	2.0	0
609	SUPERHALOGEN BEHAVIOR OF FeO4 AND MnO4. , 2000, , .		0
610	ELECTRONIC STRUCTURE AND TRANSPORT PROPERTIES OF Fe _{1-x_{., 2000, , .}}		0
611	ALKALIZATION OF ALUMINUM CLUSTERS: EVERY ELECTRON COUNTS. , 2000, , .		0
612	STABILITY, ELECTRONIC STRUCTURE, AND MAGNETIC PROPERTIES OF TRANSITION METAL ATOMS SUPPORTED ON ORGANIC TEMPLATES. , 2000, , .		0

#	Article	IF	CITATIONS
613	MAGNETIC AND THERMAL PROPERTIES OF INTERACTING (MnxN) CLUSTERS., 2005, , .		O
614	CLUSTER STUDY OF THE DISSOCIATION OF H ₂ ON Cu AND Ni (100) AND (111) SURFACES., 2005,,.		0
615	DEHYDROGENATION MECHANISM FROM TITANIUM-ACTIVATED SODIUM ALANATE. , 2009, , .		О
616	Structural and Electronic Properties of Compound Metal Clusters. , 1986, , 119-122.		0
617	Theoretical Predictions of the Vibrational Frequencies of Singlet Li4. , 1987, , 493-498.		0
618	Clusters â€" a Link Between Condensed Matter Physics and Nuclear Physics. , 1992, , 135-144.		0
619	Compound Versus Pure Metal Microclusters: How the Photoabsorption Profiles Relate to the Abundance Spectra., 1992,, 703-708.		0
620	Electronic and Structural Properties of Caged Metal Clusters. , 1994, , 371-380.		0
621	Interaction of Hydrogen Molecules with Metal Cluster Ions. , 1994, , 1277-1282.		0
622	Electronic structure and properties of designer clusters and cluster-assemblies., 1995,, 68-72.		0
623	Clusters and Cluster Reactions., 1996,, 123-151.		0
624	Electronic Structure of Magic Metal Clusters and Cluster Assemblies. , 1998, , 179-186.		0
625	Reply to the ‰Comment on "Realization of the Zn ³⁺ oxidation stateâ€â€™ by Y. Shang, N. Sh Zhang, P. Yang and J. Xu, <i>Nanoscale</i> , 2022, 14 , DOI: 10.1039/D1NR07031B. Nanoscale, 2022, 14 8881-8885.	u, Z. ·, 5.6	0