List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3504468/publications.pdf Version: 2024-02-01

ΖΗΛΟΟΠΝΤΗ

#	Article	IF	CITATIONS
1	The granulocytes are the main immunocompetent hemocytes in Crassostrea gigas. Developmental and Comparative Immunology, 2017, 67, 221-228.	2.3	108
2	The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions. Scientific Reports, 2016, 6, 26396.	3.3	52
3	The Neuroendocrine-Immune Regulation in Response to Environmental Stress in Marine Bivalves. Frontiers in Physiology, 2018, 9, 1456.	2.8	47
4	The RNA-seq analysis suggests a potential multi-component complement system in oyster Crassostrea gigas. Developmental and Comparative Immunology, 2017, 76, 209-219.	2.3	41
5	The Cholinergic and Adrenergic Autocrine Signaling Pathway Mediates Immunomodulation in Oyster Crassostrea gigas. Frontiers in Immunology, 2018, 9, 284.	4.8	40
6	Oxidative stress, apoptosis activation and symbiosis disruption in giant clam Tridacna crocea under high temperature. Fish and Shellfish Immunology, 2019, 84, 451-457.	3.6	40
7	The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in pacific oyster <i>Crassostrea gigas</i> . Open Biology, 2017, 7, 160289.	3.6	38
8	The immunomodulation mediated by a delta-opioid receptor for [Met5]-enkephalin in oyster Crassostrea gigas. Developmental and Comparative Immunology, 2015, 49, 217-224.	2.3	35
9	The comprehensive immunomodulation of NeurimmiRs in haemocytes of oyster Crassostrea gigas after acetylcholine and norepinephrine stimulation. BMC Genomics, 2015, 16, 942.	2.8	34
10	The enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas. Fish and Shellfish Immunology, 2015, 45, 250-259.	3.6	34
11	The inhibitory role of γ-aminobutyric acid (GABA) on immunomodulation of Pacific oyster Crassostrea gigas. Fish and Shellfish Immunology, 2016, 52, 16-22.	3.6	34
12	Metabolomic and transcriptomic profiling reveals the alteration of energy metabolism in oyster larvae during initial shell formation and under experimental ocean acidification. Scientific Reports, 2020, 10, 6111.	3.3	34
13	The cholinergic immune regulation mediated by a novel muscarinic acetylcholine receptor through TNF pathway in oyster Crassostrea gigas. Developmental and Comparative Immunology, 2016, 65, 139-148.	2.3	31
14	A novel globular C1q domain containing protein (C1qDC-7) from Crassostrea gigas acts as pattern recognition receptor with broad recognition spectrum. Fish and Shellfish Immunology, 2019, 84, 920-926.	3.6	31
15	Transcriptional activation and translocation of ancient NOS during immune response. FASEB Journal, 2016, 30, 3527-3540.	0.5	30
16	Comparative study of three C1q domain containing proteins from pacific oyster Crassostrea gigas. Developmental and Comparative Immunology, 2018, 78, 42-51.	2.3	29
17	A DM9-containing protein from oyster Crassostrea gigas (CgDM9CP-2) serves as a multipotent pattern recognition receptor. Developmental and Comparative Immunology, 2018, 84, 315-326.	2.3	28
18	The activated β-integrin (CgβV) enhances RGD-binding and phagocytic capabilities of hemocytes in Crassostrea gigas. Fish and Shellfish Immunology, 2019, 87, 638-649.	3.6	27

#	Article	IF	CITATIONS
19	Altered Immune Landscape and Disrupted Coral-Symbiodinium Symbiosis in the Scleractinian Coral Pocillopora damicornis by Vibrio coralliilyticus Challenge. Frontiers in Physiology, 2019, 10, 366.	2.8	26
20	Transcriptional changes of Pacific oyster Crassostrea gigas reveal essential role of calcium signal pathway in response to CO2-driven acidification. Science of the Total Environment, 2020, 741, 140177.	8.0	26
21	The modulation role of serotonin in Pacific oyster Crassostrea gigas in response to air exposure. Fish and Shellfish Immunology, 2017, 62, 341-348.	3.6	25
22	The cGAS/STING–TBK1–IRF Regulatory Axis Orchestrates a Primitive Interferon-Like Antiviral Mechanism in Oyster. Frontiers in Immunology, 2021, 12, 689783.	4.8	25
23	P38 is involved in immune response by regulating inflammatory cytokine expressions in the Pacific oyster Crassostrea gigas. Developmental and Comparative Immunology, 2019, 91, 108-114.	2.3	24
24	Ocean acidification inhibits initial shell formation of oyster larvae by suppressing the biosynthesis of serotonin and dopamine. Science of the Total Environment, 2020, 735, 139469.	8.0	24
25	The involvement of TLR signaling and anti-bacterial effectors in enhanced immune protection of oysters after Vibrio splendidus pre-exposure. Developmental and Comparative Immunology, 2020, 103, 103498.	2.3	23
26	CgA1AR-1 acts as an alpha-1 adrenergic receptor in oyster Crassostrea gigas mediating both cellular and humoral immune response. Fish and Shellfish Immunology, 2016, 58, 50-58.	3.6	22
27	Transcriptomic analysis of oyster Crassostrea gigas larvae illustrates the response patterns regulated by catecholaminergic system upon acute heat and bacterial stress. Developmental and Comparative Immunology, 2017, 73, 52-60.	2.3	21
28	A novel tumor necrosis factor in the Pacific oyster Crassostrea gigas mediates the antibacterial response by triggering the synthesis of lysozyme and nitric oxide. Fish and Shellfish Immunology, 2020, 98, 334-341.	3.6	21
29	A norepinephrine-responsive miRNA directly promotes CgHSP90AA1 expression in oyster haemocytes during desiccation. Fish and Shellfish Immunology, 2017, 64, 297-307.	3.6	19
30	The fragmentation mechanism and immune-protective effect of CfTEP in the scallop Chlamys farreri. Developmental and Comparative Immunology, 2017, 76, 220-228.	2.3	19
31	A GTP-dependent Phosphoenolpyruvate Carboxykinase from Crassostrea gigas Involved in Immune Recognition. Developmental and Comparative Immunology, 2017, 77, 318-329.	2.3	19
32	Glycogen synthase kinase-3 (GSK3) regulates TNF production and haemocyte phagocytosis in the immune response of Chinese mitten crab Eriocheir sinensis. Developmental and Comparative Immunology, 2017, 73, 144-155.	2.3	18
33	The involvement of suppressor of cytokine signaling 6 (SOCS6) in immune response of Chinese mitten crab Eriocheir sinensis. Fish and Shellfish Immunology, 2018, 72, 502-509.	3.6	17
34	Soluble adenylyl cyclase mediates mitochondrial pathway of apoptosis and ATP metabolism in oyster Crassostrea gigas exposed to elevated CO2. Fish and Shellfish Immunology, 2017, 66, 140-147.	3.6	16
35	A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin. Developmental and Comparative Immunology, 2016, 55, 211-220.	2.3	15
36	A serotonin receptor (Cg5-HTR-1) mediating immune response in oyster Crassostrea gigas. Developmental and Comparative Immunology, 2018, 82, 83-93.	2.3	15

#	Article	IF	CITATIONS
37	A novel C-type lectin from the sea cucumber Apostichopus japonicus (AjCTL-2) with preferential binding of d-galactose. Fish and Shellfish Immunology, 2018, 79, 218-227.	3.6	15
38	Dopamine and Serotonin Modulate Free Amino Acids Production and Na+/K+ Pump Activity in Chinese Mitten Crab Eriocheir sinensis Under Acute Salinity Stress. Frontiers in Physiology, 2018, 9, 1080.	2.8	15
39	A new member of the runt domain family from Pacific oyster Crassostrea gigas (CgRunx) potentially involved in immune response and larvae hematopoiesis. Fish and Shellfish Immunology, 2019, 89, 228-236.	3.6	14
40	A DM9-containing protein from oyster Crassostrea gigas (CgDM9CP-3) mediating immune recognition and encapsulation. Developmental and Comparative Immunology, 2021, 116, 103937.	2.3	14
41	Hemolymph C1qDC promotes the phagocytosis of oyster Crassostrea gigas hemocytes by interacting with the membrane receptor β-integrin. Developmental and Comparative Immunology, 2019, 98, 42-53.	2.3	13
42	The immunomodulatory function of invertebrate specific neuropeptide FMRFamide in oyster Crassostrea gigas. Fish and Shellfish Immunology, 2019, 88, 480-488.	3.6	13
43	Beclin-1 is involved in the regulation of antimicrobial peptides expression in Chinese mitten crab Eriocheir sinensis. Fish and Shellfish Immunology, 2019, 89, 207-216.	3.6	13
44	D1 dopamine receptor is involved in shell formation in larvae of Pacific oyster Crassostrea gigas. Developmental and Comparative Immunology, 2018, 84, 337-342.	2.3	12
45	The Inhibition of Ocean Acidification on the Formation of Oyster Calcified Shell by Regulating the Expression of Cgchs1 and Cgchit4. Frontiers in Physiology, 2019, 10, 1034.	2.8	12
46	ATG10 (autophagy-related 10) regulates the formation of autophagosome in the anti-virus immune response of pacific oyster (Crassostrea gigas). Fish and Shellfish Immunology, 2019, 91, 325-332.	3.6	11
47	CgSOCS6 negatively regulates the expression of CglL17s and CgDefh1 in the pacific oyster Crassostrea gigas. Fish and Shellfish Immunology, 2019, 93, 1084-1092.	3.6	10
48	Chinese mitten crab (Eriocheir sinensis) iron-sulphur cluster assembly protein 2 (EslscA2) is differentially regulated after immune and oxidative stress challenges. Developmental and Comparative Immunology, 2018, 84, 343-352.	2.3	9
49	The involvement of zinc transporters in the zinc accumulation in the Pacific oyster Crassostrea gigas. Gene, 2020, 750, 144759.	2.2	9
50	The First Genome Survey of the Antarctic Krill (Euphausia superba) Provides a Valuable Genetic Resource for Polar Biomedical Research. Marine Drugs, 2020, 18, 185.	4.6	9
51	The sensing pattern and antitoxic response of Crassostrea gigas against extracellular products of Vibrio splendidus. Developmental and Comparative Immunology, 2020, 102, 103467.	2.3	8
52	Molecular characterization of a cathepsin L1 highly expressed in phagocytes of pacific oyster Crassostrea gigas. Developmental and Comparative Immunology, 2018, 89, 152-162.	2.3	6
53	A membrane-bound dopamine β-hydroxylase highly expressed in granulocyte of Pacific oyster Crassostrea gigas. Developmental and Comparative Immunology, 2020, 104, 103563.	2.3	5
54	The Increased Expression of an Engrailed to Sustain Shell Formation in Response to Ocean Acidification. Frontiers in Physiology, 2020, 11, 530435.	2.8	5

#	Article	IF	CITATIONS
55	A novel CgIFNLP receptor involved in regulating ISG expression in oyster Crassostrea gigas. Developmental and Comparative Immunology, 2021, 124, 104206.	2.3	5
56	A novel Adiponectin receptor (AdipoR) involved in regulating cytokines production and apoptosis of haemocytes in oyster Crassostrea gigas. Developmental and Comparative Immunology, 2020, 110, 103727.	2.3	4
5 7	A hexokinase from the oyster Crassostrea gigas is involved in immune recognition as a pattern recognition receptor. Developmental and Comparative Immunology, 2021, 122, 104083.	2.3	4
58	Cortisol modulates glucose metabolism and oxidative response after acute high temperature stress in Pacific oyster Crassostrea gigas. Fish and Shellfish Immunology, 2022, 126, 141-149.	3.6	4
59	A Signaling Pathway to Mediate the Combined Immunomodulation of Acetylcholine and Enkephalin in Oyster Crassostrea gigas. Frontiers in Immunology, 2020, 11, 616.	4.8	3
60	A myxovirus resistance like protein involved in CgIFNLP mediated immune response of oyster Crassostrea gigas. Fish and Shellfish Immunology, 2021, 119, 318-328.	3.6	3
61	A truncated intracellular Dicer-like molecule involves in antiviral immune recognition of oyster Crassostrea gigas. Developmental and Comparative Immunology, 2021, 116, 103931.	2.3	2
62	The glutaminase (CgGLS-1) mediates anti-bacterial immunity by prompting cytokine synthesis and hemocyte apoptosis in Pacific oyster Crassostrea gigas. Scientific Reports, 2021, 11, 1281.	3.3	2
63	A tripartite motif protein (CgTRIM1) involved in CgIFNLP mediated antiviral immunity in the Pacific oyster Crassostrea gigas. Developmental and Comparative Immunology, 2021, 123, 104146.	2.3	2
64	A novel programmed cell death protein 4 negatively regulates CgIL17-5 expression in hemocytes of oyster Pacific oyster (Crassostrea gigas). Fish and Shellfish Immunology, 2020, 99, 594-602.	3.6	1