Mun Hon Cheah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/350436/publications.pdf Version: 2024-02-01

Μυν Ηον Снелн

#	Article	IF	CITATIONS
1	Water-oxidation catalysis by manganese in a geochemical-like cycle. Nature Chemistry, 2011, 3, 461-466.	13.6	479
2	Structures of the intermediates of Kok's photosynthetic water oxidation clock. Nature, 2018, 563, 421-425.	27.8	386
3	Structure of photosystem II and substrate binding at room temperature. Nature, 2016, 540, 453-457.	27.8	323
4	Untangling the sequence of events during the S ₂ → S ₃ transition in photosystem II and implications for the water oxidation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12624-12635.	7.1	149
5	Modeling [Feâ^'Fe] Hydrogenase:  Evidence for Bridging Carbonyl and Distal Iron Coordination Vacancy in an Electrocatalytically Competent Proton Reduction by an Iron Thiolate Assembly That Operates through Fe(0)â^'Fe(II) Levels. Journal of the American Chemical Society, 2007, 129, 11085-11092.	13.7	114
6	Photodamage to the oxygen evolving complex of photosystem II by visible light. Scientific Reports, 2015, 5, 16363.	3.3	77
7	Electrocatalytic Proton Reduction by Phosphido-Bridged Diiron Carbonyl Compounds:Â Distant Relations to the H-Cluster?. Inorganic Chemistry, 2004, 43, 5635-5644.	4.0	75
8	X-ray Absorption and Micro X-ray Fluorescence Spectroscopy Investigation of Copper and Zinc Speciation in Biosolids. Environmental Science & amp; Technology, 2011, 45, 7249-7257.	10.0	75
9	Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition. Nature Communications, 2021, 12, 6531.	12.8	73
10	Steps along the Path to Dihydrogen Activation at [FeFe] Hydrogenase Structural Models:Â Dependence of the Core Geometry on Electrocatalytic Proton Reduction. Inorganic Chemistry, 2007, 46, 1741-1750.	4.0	59
11	The action spectrum of Photosystem II photoinactivation in visible light. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 247-260.	3.8	42
12	Assessment of the manganese cluster's oxidation state via photoactivation of photosystem II microcrystals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 141-145.	7.1	34
13	Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flameâ€Made Manganese Oxide Nanocrystals. ChemSusChem, 2015, 8, 4162-4171.	6.8	30
14	Structural isomers of the S ₂ state in photosystem II: do they exist at room temperature and are they important for function?. Physiologia Plantarum, 2019, 166, 60-72.	5.2	30
15	Mechanism of Photodamage of the Oxygen Evolving Mn Cluster of Photosystem II by Excessive Light Energy. Scientific Reports, 2017, 7, 7604.	3.3	25
16	X-ray free-electron laser studies reveal correlated motion during isopenicillin <i>N</i> synthase catalysis. Science Advances, 2021, 7, .	10.3	23
17	Online Oxygen Kinetic Isotope Effects Using Membrane Inlet Mass Spectrometry Can Differentiate between Oxidases for Mechanistic Studies and Calculation of Their Contributions to Oxygen Consumption in Whole Tissues. Analytical Chemistry, 2014, 86, 5171-5178.	6.5	21
18	On the kinetics and reaction mechanisms of boronic acid in interaction with diols for non-enzymatic glucose monitoring applications: a hybrid DFT study. RSC Advances, 2014, 4, 10505.	3.6	19

Mun Hon Cheah

#	Article	IF	CITATIONS
19	Two Quenchers Formed During Photodamage of Phostosystem II and The Role of One Quencher in Preemptive Photoprotection. Scientific Reports, 2019, 9, 17275.	3.3	18
20	Photo-oxidation of tyrosine in a bio-engineered bacterioferritin â€reaction centre'—A protein model for artificial photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1821-1834.	1.0	17
21	Electrochemical oxidation of ferricyanide. Scientific Reports, 2021, 11, 23058.	3.3	17
22	XANES and EXAFS of dilute solutions of transition metals at XFELs. Journal of Synchrotron Radiation, 2019, 26, 1716-1724.	2.4	16
23	Applications of X-ray absorption spectroscopy to biologically relevant metal-based chemistry. Radiation Physics and Chemistry, 2010, 79, 185-194.	2.8	14
24	High-accuracy X-ray absorption spectra from m <i>M</i> solutions of nickel (II) complexes with multiple solutions using transmission XAS. Journal of Synchrotron Radiation, 2015, 22, 1008-1021.	2.4	14
25	Integration of EXAFS, Spectroscopic, and DFT Techniques for Elucidation of the Structure of Reactive Diiron Compounds. Australian Journal of Chemistry, 2006, 59, 263.	0.9	13
26	XAFS and DFT Characterisation of Protonated Reduced Fe Hydrogenase Analogues and Their Implications for Electrocatalytic Proton Reduction. European Journal of Inorganic Chemistry, 2011, 2011, 1128-1137.	2.0	13
27	Room temperature XFEL crystallography reveals asymmetry in the vicinity of the two phylloquinones in photosystem I. Scientific Reports, 2021, 11, 21787.	3.3	11
28	X-Ray Spectroscopy and Structure Elucidation of Reactive Electrogenerated Tri-iron Carbonyl Sulfide Clusters. Australian Journal of Chemistry, 2012, 65, 241.	0.9	10
29	Structural investigation of m <i>M</i> Ni(II) complex isomers using transmission XAFS: the significance ofÂmodel development. Journal of Synchrotron Radiation, 2015, 22, 1475-1491.	2.4	10
30	Effects of x-ray free-electron laser pulse intensity on the Mn K <i>β</i> _{1,3} x-ray emission spectrum in photosystem II—A case study for metalloprotein crystals and solutions. Structural Dynamics, 2021, 8, 064302.	2.3	10
31	Water Oxidation by Pentapyridyl Base Metal Complexes? A Case Study. Inorganic Chemistry, 2022, 61, 9104-9118.	4.0	5
32	Lewis acid protection turns cyanide containing [FeFe]-hydrogenase mimics into proton reduction catalysts. Dalton Transactions, 2022, 51, 4634-4643.	3.3	4
33	Spin transition in a ferrous chloride complex supported by a pentapyridine ligand. Chemical Communications, 2020, 56, 2703-2706.	4.1	3
34	Electronic and geometric structure effects on one-electron oxidation of first-row transition metals in the same ligand framework. Dalton Transactions, 2021, 50, 660-674.	3.3	3
35	Hydrogenases and Model Complexes in Bioorganometallic Chemistry. , 2021, , .		1
36	Impact of the 2Fe2P core geometry on the reduction chemistry of phosphido-bridged diiron hexacarbonyl compoundsâ€. Australian Journal of Chemistry, 2022, , .	0.9	1