Sabine Seuter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3504353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear receptor activation shapes spatial genome organization essential for gene expression control: lessons learned from the vitamin D receptor. Nucleic Acids Research, 2022, 50, 3745-3763.	6.5	8
2	A hierarchical regulatory network analysis of the vitamin D induced transcriptome reveals novel regulators and complete VDR dependency in monocytes. Scientific Reports, 2021, 11, 6518.	1.6	28
3	Primary Vitamin D Target Genes of Human Monocytes. Frontiers in Physiology, 2019, 10, 194.	1.3	68
4	Modulation of vitamin D signaling by the pioneer factor CEBPA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 96-106.	0.9	33
5	In vivo transcriptome changes of human white blood cells in response to vitamin D. Journal of Steroid Biochemistry and Molecular Biology, 2019, 188, 71-76.	1.2	53
6	In vivo response of the human epigenome to vitamin D: A Proof-of-principle study. Journal of Steroid Biochemistry and Molecular Biology, 2018, 180, 142-148.	1.2	59
7	ETS transcription factor family member GABPA contributes to vitamin D receptor target gene regulation. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 46-52.	1.2	26
8	The impact of the vitamin D-modulated epigenome on VDR target gene regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 697-705.	0.9	56
9	Molecular evaluation of vitamin D responsiveness of healthy young adults. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 314-321.	1.2	43
10	Epigenomic PU.1-VDR crosstalk modulates vitamin D signaling. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 405-415.	0.9	48
11	Selective regulation of biological processes by vitamin D based on the spatio-temporal cistrome of its receptor. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 952-961.	0.9	56
12	Vitamin D-dependent chromatin association of CTCF in human monocytes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1380-1388.	0.9	37
13	Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF. Nucleic Acids Research, 2016, 44, 4090-4104.	6.5	94
14	The vitamin D-dependent transcriptome of human monocytes. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 180-187.	1.2	37
15	The transcriptional regulator BCL6 participates in the secondary gene regulatory response to vitamin D. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 300-308.	0.9	26
16	Relevance of Vitamin D Receptor Target Genes for Monitoring the Vitamin D Responsiveness of Primary Human Cells. PLoS ONE, 2015, 10, e0124339.	1.1	64
17	The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 12-18.	1.2	28
18	Primary vitamin D receptor target genes as biomarkers for the vitamin D3 status in the hematopoietic system. Journal of Nutritional Biochemistry, 2014, 25, 875-884.	1.9	32

SABINE SEUTER

#	Article	IF	CITATIONS
19	Characterization of Genomic Vitamin D Receptor Binding Sites through Chromatin Looping and Opening. PLoS ONE, 2014, 9, e96184.	1.1	29
20	Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1266-1275.	0.9	59
21	The gene for the transcription factor BHLHE40/DEC1/stra13 is a dynamically regulated primary target of the vitamin D receptor. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 62-67.	1.2	19
22	Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression. Nucleic Acids Research, 2013, 41, 110-124.	6.5	123
23	Primary Vitamin D Target Genes Allow a Categorization of Possible Benefits of Vitamin D3 Supplementation. PLoS ONE, 2013, 8, e71042.	1.1	87
24	Mechanism of 1α,25-dihydroxyvitamin D3-dependent repression of interleukin-12B. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 810-818.	1.9	43
25	Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Research, 2011, 39, 9181-9193.	6.5	207
26	Primary effect of 1α,25(OH)2D3 on IL-10 expression in monocytes is short-term down-regulation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1276-1286.	1.9	71