Annette Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3504147/publications.pdf

Version: 2024-02-01

31	740	11	27
papers	citations	h-index	g-index
31	31	31	1286
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Purchasing behavior and use of digital sports offers by CrossFit® and weightlifting athletes during the first SARS-CoV-2 lockdown in Germany. BMC Sports Science, Medicine and Rehabilitation, 2022, 14, 44.	1.7	3
2	Initiative on #4openScienceStandsForUkraine scientists and students. 4open, 2022, 5, E2.	0.4	1
3	Delayed Increase in Blood Lactate Concentration after a Short, Intense CrossFit® Workout. Archives of Clinical and Medical Case Reports, 2021, 05, .	0.1	4
4	Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Archives of Toxicology, 2021, 95, 727-747.	4.2	5
5	Determination of a CrossFit® Benchmark Performance Profile. Sports, 2021, 9, 80.	1.7	4
6	Validation of automated pipetting systems for cell culture seeding, exposure and bio-analytical assays in sulfur mustard toxicology. Toxicology Letters, 2020, 320, 80-86.	0.8	2
7	Assessment of α-amanitin toxicity and effects of silibinin and penicillin in different in vitro models. Toxicology in Vitro, 2020, 67, 104921.	2.4	6
8	Necrosulfonamide – Unexpected effect in the course of a sulfur mustard intoxication. Chemico-Biological Interactions, 2019, 298, 80-85.	4.0	4
9	A mass spectrometric platform for the quantitation of sulfur mustard-induced nucleic acid adducts as mechanistically relevant biomarkers of exposure. Archives of Toxicology, 2019, 93, 61-79.	4.2	24
10	A novel exposure system generating nebulized aerosol of sulfur mustard in comparison to the standard submerse exposure. Chemico-Biological Interactions, 2019, 298, 121-128.	4.0	1
11	Mobilization of human mesenchymal stem cells through different cytokines and growth factors after their immobilization by sulfur mustard. Toxicology Letters, 2018, 293, 105-111.	0.8	9
12	Cytostatic resistance profile of the sulfur mustard resistant keratinocyte cell line HaCaT/SM. Toxicology Letters, 2018, 293, 16-20.	0.8	7
13	Alteration of miRNA expression in a sulfur mustard resistant cell line. Toxicology Letters, 2018, 293, 38-44.	0.8	9
14	Effects of sulfur mustard on mesenchymal stem cells. Toxicology Letters, 2018, 293, 98-104.	0.8	6
15	Effects of anti-inflammatory compounds on sulfur mustard injured cells: Recommendations and caveats suggested by in vitro cell culture models. Toxicology Letters, 2018, 293, 91-97.	0.8	8
16	Zinc chloride-induced TRPA1 activation does not contribute to toxicity in vitro. Toxicology Letters, 2018, 293, 133-139.	0.8	8
17	Sulfur mustard-induced epigenetic modifications over time â^ a pilot study. Toxicology Letters, 2018, 293, 45-50.	0.8	6
18	Sulfur mustard resistant keratinocytes obtained elevated glutathione levels and other changes in the antioxidative defense mechanism. Toxicology Letters, 2018, 293, 51-61.	0.8	8

#	Article	IF	CITATIONS
19	Accidental sulfur mustard exposure: A case report. Toxicology Letters, 2018, 293, 62-66.	0.8	11
20	Protective effects of the thiol compounds GSH and NAC against sulfur mustard toxicity in a human keratinocyte cell line. Toxicology Letters, 2016, 244, 35-43.	0.8	25
21	Mesenchymal stem cells are highly resistant to sulfur mustard. Chemico-Biological Interactions, 2013, 206, 505-511.	4.0	17
22	Nitrogen mustard (Chlorambucil) has a negative influence on early vascular development. Toxicology, 2009, 263, 32-40.	4.2	17
23	Endothelial Precursor Cell Migration During Vasculogenesis. Circulation Research, 2007, 101, 125-136.	4. 5	132
24	Endostatin influences endothelial morphology via the activated ERK1/2-kinase endothelial morphology and signal transduction. Microvascular Research, 2006, 71, 152-162.	2. 5	20
25	Basic Fibroblast Growth Factor Controls Migration in Human Mesenchymal Stem Cells. Stem Cells, 2006, 24, 1750-1758.	3.2	217
26	Mesenchymal stem cells transmigrate over the endothelial barrier. European Journal of Cell Biology, 2006, 85, 1179-1188.	3.6	100
27	Differential endostatin binding to bladder, prostate and kidney tumour vessels. BJU International, 2005, 95, 174-179.	2.5	11
28	Vessels in Benign Prostatic Hyperplasia Contain More Binding Sites for Endostatin than Vessels in Normal Prostate Tissue. European Urology, 2004, 46, 765-767.	1.9	2
29	Influence of endostatin on embryonic vasculo―and angiogenesis. Developmental Dynamics, 2004, 230, 468-480.	1.8	43
30	Exogenous nitric oxide causes overexpression of TGF- $\hat{1}^21$ and overproduction of extracellular matrix in human coronary smooth muscle cells. Cardiovascular Research, 2003, 58, 671-678.	3.8	25
31	Sequence-Specific Antiproliferative Effects of Antisense and End-Capping-Modified Antisense Oligodeoxynucleotides Targeted against the 5'-Terminus of Basic-Fibroblast-Growth-Factor mRNA in Coronary Smooth Muscle Cells. FEBS Journal, 1997, 248, 543-549.	0.2	5