Jennifer L Puetzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3503887/publications.pdf Version: 2024-02-01

		377584	651938
26	1,972	21	25
papers	citations	h-index	g-index
32	32	32	3634
all docs	docs citations	times ranked	citing authors

IENINIEED I DIIETZED

#	Article	IF	CITATIONS
1	An inducible model for unraveling the effects of advanced glycation end-product accumulation in aging connective tissues. Connective Tissue Research, 2022, 63, 406-424.	1.1	13
2	Driving native-like zonal enthesis formation in engineered ligaments using mechanical boundary conditions and β-tricalcium phosphate. Acta Biomaterialia, 2022, 140, 700-716.	4.1	11
3	Hydrophilic implants generated using a low-cost dielectric barrier discharge plasma device at the time of placement exhibit increased osseointegration in an animal pre-clinical study: An effect that is sex-dependent. Dental Materials, 2022, 38, 632-645.	1.6	3
4	Driving Hierarchical Collagen Fiber Formation for Functional Tendon, Ligament, and Meniscus Replacement. Biomaterials, 2021, 269, 120527.	5.7	56
5	Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. Advanced Functional Materials, 2018, 28, 1800618.	7.8	167
6	A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomaterialia, 2018, 65, 102-111.	4.1	92
7	Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning. Advanced Materials, 2018, 30, e1802649.	11.1	140
8	Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering. Biomaterials, 2018, 176, 24-33.	5.7	92
9	Elastic serum-albumin based hydrogels: mechanism of formation and application in cardiac tissue engineering. Journal of Materials Chemistry B, 2018, 6, 5604-5612.	2.9	40
10	The effect of hypoxia on thermosensitive poly(<i>N</i> -vinylcaprolactam) hydrogels with tunable mechanical integrity for cartilage tissue engineering. , 2017, 105, 1863-1873.		21
11	Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomaterialia, 2017, 62, 91-101.	4.1	198
12	Long-Term Morphological and Microarchitectural Stability of Tissue-Engineered, Patient-Specific Auricles <i>In Vivo</i> . Tissue Engineering - Part A, 2016, 22, 461-468.	1.6	35
13	Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus. Tissue Engineering - Part A, 2016, 22, 907-916.	1.6	60
14	Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds. Advanced Healthcare Materials, 2016, 5, 1656-1666.	3.9	21
15	3D Bioprinting of Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering. ACS Biomaterials Science and Engineering, 2016, 2, 1800-1805.	2.6	303
16	Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage. ACS Central Science, 2016, 2, 885-895.	5.3	103
17	Pericyte Seeded Dual Peptide Scaffold with Improved Endothelialization for Vascular Graft Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 3046-3055.	3.9	33
18	Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: analysis of cell shape, matrix production, and mechanical performance. Stem Cell Research and Therapy, 2016, 7, 39.	2.4	59

Jennifer L Puetzer

#	Article	IF	CITATIONS
19	Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. Journal of Biomechanics, 2015, 48, 1436-1443.	0.9	62
20	Enhanced boundary lubrication properties of engineered menisci by lubricin localization with insulin-like growth factor I treatment. Journal of Biomechanics, 2014, 47, 2183-2188.	0.9	24
21	The Effect of IGF-I on Anatomically Shaped Tissue-Engineered Menisci. Tissue Engineering - Part A, 2013, 19, 1443-1450.	1.6	27
22	High density type I collagen gels for tissue engineering of whole menisci. Acta Biomaterialia, 2013, 9, 7787-7795.	4.1	71
23	The Effects of Cyclic Hydrostatic Pressure on Chondrogenesis and Viability of Human Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells in Three-Dimensional Agarose Constructs. Tissue Engineering - Part A, 2013, 19, 299-306.	1.6	63
24	The Effect of the Duration of Mechanical Stimulation and Post-Stimulation Culture on the Structure and Properties of Dynamically Compressed Tissue-Engineered Menisci. Tissue Engineering - Part A, 2012, 18, 1365-1375.	1.6	43
25	Fabrication of cell-laden three-dimensional alginate-scaffolds with an aerosol cross-linking process. Journal of Materials Chemistry, 2012, 22, 18735.	6.7	49
26	Comparative Review of Growth Factors for Induction of Three-Dimensional <i>In Vitro</i> Chondrogenesis in Human Mesenchymal Stem Cells Isolated from Bone Marrow and Adipose Tissue. Tissue Engineering - Part B: Reviews, 2010, 16, 435-444.	2.5	181