Ryu Nakadate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3503683/publications.pdf

Version: 2024-02-01

		1163117	1125743
19	246	8	13
papers	citations	h-index	g-index
19	19	19	278
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of robotic system for autonomous liver screening using ultrasound scanning device. , 2013, , .		53
2	A new robotic-assisted flexible endoscope with single-hand control: endoscopic submucosal dissection in the ex vivo porcine stomach. Surgical Endoscopy and Other Interventional Techniques, 2018, 32, 3386-3392.	2.4	43
3	Surgical Robot for Intraluminal Access: An <i>Ex Vivo</i> Feasibility Study. Cyborg and Bionic Systems, 2020, 2020, .	7.9	24
4	Compliant four degree-of-freedom manipulator with locally deformable elastic elements for minimally invasive surgery. , 2019 , , .		20
5	Articulated minimally invasive surgical instrument based on compliant mechanism. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 1837-1843.	2.8	18
6	Gastric endoscopic submucosal dissection using novel 2.6-mm articulating devices: an ex vivo comparative and in vivo feasibility study. Endoscopy, 2015, 47, 820-824.	1.8	17
7	Next-generation robotic surgery - from the aspect of surgical robots developed by industry. Minimally Invasive Therapy and Allied Technologies, 2015, 24, 2-7.	1.2	14
8	Colorectal endoscopic submucosal dissection using novel articulating devices: a comparative study in a live porcine model. Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 651-657.	2.4	14
9	Improving the strength of sutureless laser-assisted vessel repair using preloaded longitudinal compression on tissue edge. Lasers in Surgery and Medicine, 2017, 49, 533-538.	2.1	12
10	Self-Propelled Colonoscopy Robot Using Flexible Paddles. IEEE Robotics and Automation Letters, 2020, 5, 6710-6716.	5.1	11
11	Principles and development of collagen-mediated tissue fusion induced by laser irradiation. Scientific Reports, 2019, 9, 9383.	3.3	8
12	Stress Dispersion Design in Continuum Compliant Structure toward Multi-DOF Endoluminal Forceps. Applied Sciences (Switzerland), 2022, 12, 2480.	2.5	5
13	Objective assessment of robotic suturing skills with a new computerized system: A step forward in the training of robotic surgeons. Asian Journal of Endoscopic Surgery, 2019, 12, 388-395.	0.9	4
14	Multi-DOF Robotic Forceps for Laparoscopy using in-frame spring mechanism. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2015, 2015.6, 62-63.	0.0	1
15	Three-dimensional target tracking and autonomous positioning using probe-holding robot. Choonpa Igaku, 2018, 45, 149-157.	0.0	1
16	Development of a Self-Propelled Colonoscope Robot with a Conical Worm Gear Mechanism. Journal of Japan Society of Computer Aided Surgery, 2019, 21, 5-11.	0.0	1
17	Operability study on the multisensory illusion inducible in microsurgical robotic systems. , 2015, , .		O
18	Laparoscopic ultrasound manipulator with a spring-based elastic mechanism. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1063-1072.	2.8	0

#	Article	IF	CITATIONS
19	Introduction of My Past Research of Minimally Invasive Surgical Devices. Journal of Japan Society of Computer Aided Surgery, 2019, 21, 70-74.	0.0	O