Sebastian Reinhold SÃ, rensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3503674/publications.pdf

Version: 2024-02-01

SEBASTIAN REINHOLD

#	Article	IF	CITATIONS
1	lsolation and characterization of psychrotolerant denitrifying bacteria for improvement of nitrate removal in woodchip bioreactors treating agricultural drainage water at low temperature. Environmental Science: Water Research and Technology, 2022, 8, 396-406.	2.4	5
2	Temperature Sensitivity and Composition of Nitrate-Reducing Microbiomes from a Full-Scale Woodchip Bioreactor Treating Agricultural Drainage Water. Microorganisms, 2021, 9, 1331.	3.6	16
3	Microbiome Structure and Function in Woodchip Bioreactors for Nitrate Removal in Agricultural Drainage Water. Frontiers in Microbiology, 2021, 12, 678448.	3.5	11
4	Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater. Water Research, 2018, 129, 1-10.	11.3	46
5	Biocarriers Improve Bioaugmentation Efficiency of a Rapid Sand Filter for the Treatment of 2,6-Dichlorobenzamide-Contaminated Drinking Water. Environmental Science & Technology, 2017, 51, 1616-1625.	10.0	40
6	Adhesion to sand and ability to mineralise low pesticide concentrations are required for efficient bioaugmentation of flow-through sand filters. Applied Microbiology and Biotechnology, 2017, 101, 411-421.	3.6	12
7	Surface Colonization and Activity of the 2,6-Dichlorobenzamide (BAM) Degrading <i>Aminobacter</i> sp. Strain MSH1 at Macro- and Micropollutant BAM Concentrations. Environmental Science & Technology, 2016, 50, 10123-10133.	10.0	21
8	Biodegradation: Updating the Concepts of Control for Microbial Cleanup in Contaminated Aquifers. Environmental Science & Technology, 2015, 49, 7073-7081.	10.0	211
9	Abiotic and Biotic Processes Governing the Fate of Phenylurea Herbicides in Soils: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 1947-1998.	12.8	77
10	Environmental Fate of the Herbicide Fluazifop-P-butyl and Its Degradation Products in Two Loamy Agricultural Soils: A Combined Laboratory and Field Study. Environmental Science & Technology, 2015, 49, 8995-9003.	10.0	7
11	Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1. Applied Microbiology and Biotechnology, 2014, 98, 2335-2344.	3.6	19
12	Small ¹³ C/ ¹² C Fractionation Contrasts with Large Enantiomer Fractionation in Aerobic Biodegradation of Phenoxy Acids. Environmental Science & Technology, 2014, 48, 5501-5511.	10.0	31
13	Degradation of three benzonitrile herbicides by <i>Aminobacter</i> <scp>MSH1</scp> versus soil microbial communities: pathways and kinetics. Pest Management Science, 2014, 70, 1291-1298.	3.4	12
14	Comparing Metabolic Functionalities, Community Structures, and Dynamics of Herbicide-Degrading Communities Cultivated with Different Substrate Concentrations. Applied and Environmental Microbiology, 2013, 79, 367-375.	3.1	33
15	The Novel Bacterial <i>N</i> -Demethylase PdmAB Is Responsible for the Initial Step of <i>N</i> , <i>N</i> -Dimethyl-Substituted Phenylurea Herbicide Degradation. Applied and Environmental Microbiology, 2013, 79, 7846-7856.	3.1	42
16	Novel Insight into the Genetic Context of the cadAB Genes from a 4-chloro-2-methylphenoxyacetic Acid-Degrading Sphingomonas. PLoS ONE, 2013, 8, e83346.	2.5	30
17	Microbial Degradation of 2,4-Dichlorophenoxyacetic Acid on the Greenland Ice Sheet. Applied and Environmental Microbiology, 2012, 78, 5070-5076.	3.1	33
18	C and N Isotope Fractionation during Biodegradation of the Pesticide Metabolite 2,6-Dichlorobenzamide (BAM): Potential for Environmental Assessments. Environmental Science & Technology, 2012, 46, 1447-1454.	10.0	38

SEBASTIAN REINHOLD

#	Article	IF	CITATIONS
19	Intermediate accumulation of metabolites results in a bottleneck for mineralisation of the herbicide metabolite 2,6-dichlorobenzamide (BAM) by Aminobacter spp Applied Microbiology and Biotechnology, 2012, 94, 237-245.	3.6	21
20	Centimetre-scale vertical variability of phenoxy acid herbicide mineralization potential in aquifer sediment relates to the abundance of tfdA genes. FEMS Microbiology Ecology, 2012, 80, 331-341.	2.7	16
21	A Novel Hydrolase Identified by Genomic-Proteomic Analysis of Phenylurea Herbicide Mineralization by Variovorax sp. Strain SRS16. Applied and Environmental Microbiology, 2011, 77, 8754-8764.	3.1	70
22	Biodegradation of the herbicide mecoprop-p with soil depth and its relationship with class III tfdA genes. Soil Biology and Biochemistry, 2010, 42, 32-39.	8.8	26
23	Presence of psychrotolerant phenanthrene-mineralizing bacterial populations in contaminated soils from the Greenland High Arctic. FEMS Microbiology Letters, 2010, 305, 148-154.	1.8	10
24	C, N, and H Isotope Fractionation of the Herbicide Isoproturon Reflects Different Microbial Transformation Pathways. Environmental Science & amp; Technology, 2010, 44, 2372-2378.	10.0	56
25	Evaluation of Bioaugmentation with Entrapped Degrading Cells as a Soil Remediation Technology. Environmental Science & Technology, 2010, 44, 7622-7627.	10.0	21
26	Constitutive mineralization of low concentrations of the herbicide linuron by a <i>Variovorax</i> sp. strain. FEMS Microbiology Letters, 2009, 292, 291-296.	1.8	26
27	Rapid Mineralization of the Phenylurea Herbicide Diuron by <i>Variovorax</i> sp. Strain SRS16 in Pure Culture and within a Two-Member Consortium. Applied and Environmental Microbiology, 2008, 74, 2332-2340.	3.1	137
28	Degradation and Mineralization of Nanomolar Concentrations of the Herbicide Dichlobenil and Its Persistent Metabolite 2,6-Dichlorobenzamide by Aminobacter spp. Isolated from Dichlobenil-Treated Soils. Applied and Environmental Microbiology, 2007, 73, 399-406.	3.1	88
29	Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans. FEMS Microbiology Letters, 2007, 268, 254-260.	1.8	15
30	Biostimulation and enrichment of 2,6-dichlorobenzamide-mineralising soil bacterial communities from dichlobenil-exposed soil. Soil Biology and Biochemistry, 2007, 39, 216-223.	8.8	11
31	Mineralization of hydroxylated isoproturon metabolites produced by fungi. Soil Biology and Biochemistry, 2007, 39, 1751-1758.	8.8	13
32	Genetic labelling and application of the isoproturon-mineralizing Sphingomonas sp. strain SRS2 in soil and rhizosphere. Letters in Applied Microbiology, 2006, 43, 280-286.	2.2	7
33	Elucidating the Key Member of a Linuron-Mineralizing Bacterial Community by PCR and Reverse Transcription-PCR Denaturing Gradient Gel Electrophoresis 16S rRNA Gene Fingerprinting and Cultivation. Applied and Environmental Microbiology, 2005, 71, 4144-4148.	3.1	68
34	Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiology Ecology, 2003, 45, 1-11.	2.7	189
35	In-Field Spatial Variability in the Degradation of the Phenyl-Urea Herbicide Isoproturon Is the Result of Interactions between Degradative Sphingomonas spp. and Soil pH. Applied and Environmental Microbiology, 2003, 69, 827-834.	3.1	141
36	Mineralization of Soil-Aged Isoproturon and Isoproturon Metabolites by sp. Strain SRS2. Journal of Environmental Quality, 2003, 32, 1250.	2.0	26

SEBASTIAN REINHOLD

#	Article	IF	CITATIONS
37	Growth in Coculture Stimulates Metabolism of the Phenylurea Herbicide Isoproturon by Sphingomonas sp. Strain SRS2. Applied and Environmental Microbiology, 2002, 68, 3478-3485.	3.1	76
38	Analysing transformation products of herbicide residues in environmental samples. Water Research, 2001, 35, 1371-1378.	11.3	62
39	Biodegradation of the phenylurea herbicide isoproturon and its metabolites in agricultural soils. , 2001, 12, 69-77.		32
40	Isolation from Agricultural Soil and Characterization of a Sphingomonas sp. Able To Mineralize the Phenylurea Herbicide Isoproturon. Applied and Environmental Microbiology, 2001, 67, 5403-5409.	3.1	134
41	Mecoprop, Isoproturon, and Atrazine in and above a Sandy Aquifer:Â Vertical Distribution of Mineralization Potential. Environmental Science & Technology, 2000, 34, 2426-2430.	10.0	75