Eckhard Quandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3503600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New materials for micro-scale sensors and actuators. Materials Science and Engineering Reports, 2007, 56, 1-129.	31.8	438
2	Ultralow-fatigue shape memory alloy films. Science, 2015, 348, 1004-1007.	12.6	361
3	Determination of elastic modulus of thin layers using nanoindentation. Journal of Materials Research, 1997, 12, 2475-2484.	2.6	346
4	Caloric Effects in Ferroic Materials: New Concepts for Cooling. Advanced Engineering Materials, 2012, 14, 10-19.	3.5	278
5	Exchange biasing of magnetoelectric composites. Nature Materials, 2012, 11, 523-529.	27.5	258
6	Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Applied Physics Letters, 2010, 96, .	3.3	222
7	High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Applied Physics Letters, 2012, 101, 091903.	3.3	211
8	Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta Materialia, 2014, 81, 9-20.	7.9	206
9	A Love-wave biosensor using nucleic acids as ligands. Sensors and Actuators B: Chemical, 2004, 101, 308-315.	7.8	158
10	MEMS magnetic field sensor based on magnetoelectric composites. Journal of Micromechanics and Microengineering, 2012, 22, 065024.	2.6	130
11	Preparation and applications of magnetostrictive thin films. Journal of Applied Physics, 1994, 76, 7000-7002.	2.5	127
12	Thin film shape memory microvalves with adjustable operation temperature. Sensors and Actuators A: Physical, 2000, 83, 214-219.	4.1	123
13	Phase engineering and supercompatibility of shape memory alloys. Materials Today, 2018, 21, 265-277.	14.2	122
14	Sputter deposition of TiNi, TiNiPd and TiPd films displaying the two-way shape-memory effect. Sensors and Actuators A: Physical, 1996, 53, 434-439.	4.1	120
15	Sensitivity enhancement of magnetoelectric sensors through frequency-conversion. Sensors and Actuators A: Physical, 2012, 183, 16-21.	4.1	119
16	First observation of light-induced spin change in vacuum deposited thin films of iron spin crossover complexes. Dalton Transactions, 2011, 40, 6364.	3.3	114
17	Monitoring complex formation in the blood-coagulation cascade using aptamer-coated SAW sensors. Biosensors and Bioelectronics, 2005, 20, 2044-2052.	10.1	111
18	Recent developments in shape memory thin film technology. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 40-46.	5.6	100

#	Article	IF	CITATIONS
19	Local Evolution of the Elastocaloric Effect in TiNi-Based Films. Shape Memory and Superelasticity, 2015, 1, 142-152.	2.2	91
20	Giant magnetostrictive thin films for applications in microelectromechanical systems (invited). Journal of Applied Physics, 2000, 87, 4691-4695.	2.5	90
21	Wide Band Low Noise Love Wave Magnetic Field Sensor System. Scientific Reports, 2018, 8, 278.	3.3	89
22	Giant magnetoelectric effect in vacuum. Applied Physics Letters, 2013, 102, .	3.3	88
23	Piezoelectric properties of 0.5(Ba0.7Ca0.3TiO3) – 0.5[Ba(Zr0.2Ti0.8)O3] ferroelectric lead-free laser deposited thin films. Journal of Applied Physics, 2011, 109, .	2.5	87
24	Giant Magnetoelectric Effect in Thinâ€Film Composites. Journal of the American Ceramic Society, 2013, 96, 1673-1681.	3.8	85
25	Fully integrable magnetic field sensor based on delta-E effect. Applied Physics Letters, 2011, 99, 223502.	3.3	82
26	Magnetostrictive actuation in microsystems. Sensors and Actuators A: Physical, 2000, 81, 275-280.	4.1	81
27	Highly sensitive wafer-level packaged MEMS magnetic field sensor based on magnetoelectric composites. Sensors and Actuators A: Physical, 2013, 189, 321-327.	4.1	81
28	Low damping resonant magnetoelectric sensors. Applied Physics Letters, 2010, 97, .	3.3	80
29	Shape memory microvalves based on thin films or rolled sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 784-788.	5.6	79
30	Elastocaloric Cooling on the Miniature Scale: A Review on Materials and Device Engineering. Energy Technology, 2018, 6, 1588-1604.	3.8	78
31	Optimization of the ΔE effect in thin films and multilayers by magnetic field annealing. IEEE Transactions on Magnetics, 2002, 38, 2829-2831.	2.1	75
32	Giant magnetostrictive multilayers (invited). Journal of Applied Physics, 1999, 85, 6232-6237.	2.5	74
33	Noise Performance of Magnetometers With Resonant Thin-Film Magnetoelectric Sensors. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 2995-3001.	4.7	74
34	Phase modulated magnetoelectric delta-E effect sensor for sub-nano tesla magnetic fields. Applied Physics Letters, 2015, 107, .	3.3	74
35	Ultra-Low Fatigue Quaternary TiNi-Based Films for Elastocaloric Cooling. Shape Memory and Superelasticity, 2016, 2, 95-103.	2.2	73
36	Giant magnetostrictive spring magnet type multilayers. Journal of Applied Physics, 1997, 81, 5420-5422.	2.5	71

#	Article	IF	CITATIONS
37	Highly sensitive strain sensors based on magnetic tunneling junctions. Applied Physics Letters, 2002, 81, 313-315.	3.3	71
38	Nanostructured magnetic Fe–Ni–Co/Teflon multilayers for high-frequency applications in the gigahertz range. Applied Physics Letters, 2006, 89, 242501.	3.3	71
39	Low temperature aluminum nitride thin films for sensory applications. AIP Advances, 2016, 6, .	1.3	70
40	TiNi-based films for elastocaloric microcooling— Fatigue life and device performance. APL Materials, 2016, 4, .	5.1	69
41	Self-Biased Magnetoelectric Composites: An Overview and Future Perspectives. Energy Harvesting and Systems, 2016, 3, 1-42.	2.7	69
42	Discrimination of Single Mutations in Cancer-Related Gene Fragments with a Surface Acoustic Wave Sensor. Analytical Chemistry, 2006, 78, 4865-4871.	6.5	67
43	Inverse bilayer magnetoelectric thin film sensor. Applied Physics Letters, 2016, 109, .	3.3	62
44	Multitarget sputtering of high magnetostrictive Tbâ€Dyâ€Fe films. Journal of Applied Physics, 1994, 75, 5653-5655.	2.5	61
45	Micropatterned Freestanding Superelastic TiNi Films. Advanced Engineering Materials, 2013, 15, 66-69.	3.5	59
46	Giant magnetostrictive thin film materials and applications. Journal of Alloys and Compounds, 1997, 258, 126-132.	5.5	57
47	Magnetoelectric thin film composites with interdigital electrodes. Applied Physics Letters, 2013, 103, .	3.3	57
48	Magnetoelectric magnetic field sensors. MRS Bulletin, 2018, 43, 834-840.	3.5	57
49	Time-of-flight magnetic flow cytometry in whole blood with integrated sample preparation. Lab on A Chip, 2013, 13, 1035.	6.0	55
50	Corrosion performance and mechanical properties of sputter-deposited MgY and MgGd alloys. Corrosion Science, 2014, 78, 43-54.	6.6	55
51	Magnetic anisotropy and domain patterning of amorphous films by He-ion irradiation. Applied Physics Letters, 2005, 86, 162502.	3.3	53
52	Deposition of Nanocomposites by Plasmas. Contributions To Plasma Physics, 2007, 47, 537-544.	1.1	53
53	Exchange biased magnetoelectric composites for magnetic field sensor application by frequency conversion. Journal of Applied Physics, 2015, 117, .	2.5	53
54	Mechanical-Resonance-Enhanced Thin-Film Magnetoelectric Heterostructures for Magnetometers, Mechanical Antennas, Tunable RF Inductors, and Filters. Materials, 2019, 12, 2259.	2.9	53

#	Article	IF	CITATIONS
55	Fabrication and simulation of magnetostrictive thin-film actuators. Sensors and Actuators A: Physical, 1995, 50, 105-109.	4.1	52
56	Electrically modulated magnetoelectric sensors. Applied Physics Letters, 2016, 108, .	3.3	51
57	Evaluation of magnetoelectric sensor systems for cardiological applications. Measurement: Journal of the International Measurement Confederation, 2018, 116, 230-238.	5.0	51
58	Functional Polymer Nanocomposites. Polymers and Polymer Composites, 2008, 16, 471-481.	1.9	48
59	Multimode delta-E effect magnetic field sensors with adapted electrodes. Applied Physics Letters, 2016, 108, .	3.3	48
60	Pushing the detection limit of thin film magnetoelectric heterostructures. Journal of Materials Research, 2017, 32, 1009-1019.	2.6	48
61	AlScN-based MEMS magnetoelectric sensor. Applied Physics Letters, 2020, 117, .	3.3	46
62	Integration of two degree-of-freedom magnetostrictive actuation and piezoresistive detection: application to a two-dimensional optical scanner. Journal of Microelectromechanical Systems, 2002, 11, 355-361.	2.5	44
63	SAW Sensor System for Markerâ€Free Molecular Interaction Analysis. Analytical Letters, 2006, 39, 1747-1757.	1.8	43
64	Roadmap on Magnetoelectric Materials and Devices. IEEE Transactions on Magnetics, 2021, 57, 1-57.	2.1	43
65	Successive occurrence of ferromagnetic and shape memory properties during crystallization of NiMnGa freestanding films. Journal of Magnetism and Magnetic Materials, 2006, 302, 421-428.	2.3	41
66	Pressure sensor based on magnetic tunnel junctions. Journal of Applied Physics, 2009, 105, .	2.5	41
67	Determination of elastic modulus of thin films and small specimens using beam bending methods. Journal of Materials Research, 1999, 14, 2152-2161.	2.6	39
68	The ferromagnetic shape memory system Fe–Pd–Cu. Acta Materialia, 2010, 58, 5949-5961.	7.9	39
69	Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited). AIP Advances, 2016, 6, .	1.3	39
70	Tuning fork for noise suppression in magnetoelectric sensors. Sensors and Actuators A: Physical, 2016, 237, 91-95.	4.1	39
71	High-performance elastocaloric materials for the engineering of bulk- and micro-cooling devices. MRS Bulletin, 2018, 43, 280-284.	3.5	37
72	Mesoscale simulation of elastocaloric cooling in SMA films. Acta Materialia, 2017, 136, 105-117.	7.9	36

#	Article	IF	CITATIONS
73	Magnetic properties and microstructure of giant magnetostrictive TbFe/FeCo multilayers. Journal of Applied Physics, 1998, 83, 7267-7269.	2.5	35
74	High-frequency magnetoelastic materials for remote-interrogated stress sensors. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1126-1131.	2.3	35
75	Noise of a JFET Charge Amplifier for Piezoelectric Sensors. IEEE Sensors Journal, 2017, 17, 7364-7371.	4.7	35
76	Elastic modulus of TbDyFe films—a comparison of nanoindentation and bending measurements. Thin Solid Films, 1996, 287, 208-213.	1.8	34
77	Ni–Ti–Ag shape memory thin films. Scripta Materialia, 2007, 56, 1075-1077.	5.2	33
78	Biofunctional structural design of SAW sensor chip surfaces in a microfluidic sensor system. Sensors and Actuators B: Chemical, 2007, 124, 46-52.	7.8	32
79	Magnetic anisotropy controlled FeCoSiB thin films for surface acoustic wave magnetic field sensors. Applied Physics Letters, 2020, 116, .	3.3	32
80	First experimental test of a new monochromated and aberration-corrected 200kV field-emission scanning transmission electron microscope. Ultramicroscopy, 2006, 106, 963-969.	1.9	31
81	Dual wavelength magneto-optical imaging of magnetic thin films. Applied Physics Letters, 2013, 103, .	3.3	31
82	Origin of hysteretic magnetoelastic behavior in magnetoelectric 2-2 composites. Applied Physics Letters, 2014, 105, .	3.3	31
83	Electrically modulated magnetoelectric AlN/FeCoSiB film composites for DC magnetic field sensing. Journal Physics D: Applied Physics, 2018, 51, 354002.	2.8	31
84	Comparison of the corrosion behaviour of bulk and thin film magnesium alloys. Corrosion Science, 2010, 52, 3973-3977.	6.6	30
85	Energy transduction ferroic materials. Materials Today, 2018, 21, 771-784.	14.2	30
86	Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields. Scientific Reports, 2019, 9, 16355.	3.3	30
87	Giant magnetostrictive thin film materials and applications. Journal of Alloys and Compounds, 1997, 258, 126-132.	5.5	30
88	Micro-sensor coupling magnetostriction and magnetoresistive phenomena. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1132-1135.	2.3	29
89	Magnetism, elasticity, and magnetostriction of FeCoGa alloys. Journal of Applied Physics, 2003, 93, 8627-8629.	2.5	29
90	Magnetoelastic and magnetostatic interactions in exchange-spring multilayers. Physical Review B, 2005, 72, .	3.2	29

#	Article	IF	CITATIONS
91	Magnetic domain control and voltage response of exchange biased magnetoelectric composites. Applied Physics Letters, 2014, 104, .	3.3	29
92	Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors. Sensors, 2016, 16, 1902.	3.8	29
93	Effect of crystallographic compatibility and grain size on the functional fatigue of sputtered TiNiCuCo thin films. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150311.	3.4	28
94	Thin magnesium layer confirmed as an antibacterial and biocompatible implant coating in a co-culture model. Molecular Medicine Reports, 2017, 15, 1624-1630.	2.4	28
95	Cu-rich Ti52.8Ni22.2Cu22.5Co2.5 shape memory alloy films with ultra-low fatigue for elastocaloric applications. Journal of Applied Physics, 2020, 127, .	2.5	28
96	Magnetically tunable SAW-resonator. , 0, , .		27
97	Integration of crossed anisotropy magnetic core into toroidal thin-film inductors. IEEE Transactions on Microwave Theory and Techniques, 2005, 53, 2096-2100.	4.6	27
98	Antiparallel exchange biased multilayers for low magnetic noise magnetic field sensors. Applied Physics Letters, 2019, 114, .	3.3	27
99	Exchange biased delta-E effect enables the detection of low frequency pT magnetic fields with simultaneous localization. Scientific Reports, 2021, 11, 5269.	3.3	27
100	Combination of a SAW-biosensor with MALDI mass spectrometric analysis. Biosensors and Bioelectronics, 2008, 23, 1496-1502.	10.1	26
101	Adaptive Readout Schemes for Thin-Film Magnetoelectric Sensors Based on the delta-E Effect. IEEE Sensors Journal, 2016, 16, 4891-4900.	4.7	26
102	Application of magnetostrictive thin films for microdevices. IEEE Transactions on Magnetics, 1997, 33, 2163-2166.	2.1	25
103	Giant magnetostrictive TbFe/Fe multilayers. Journal of Alloys and Compounds, 1997, 258, 133-137.	5.5	25
104	Strain sensors based on magnetostrictive GMR/TMR structures. IEEE Transactions on Magnetics, 2002, 38, 2826-2828.	2.1	25
105	Positive/negative magnetostrictive GMR trilayer systems as strain gauges. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 795-799.	2.3	25
106	Local setting of magnetic anisotropy in amorphous films by Co ion implantation. Journal Physics D: Applied Physics, 2009, 42, 055006.	2.8	25
107	Comparison of the Fatigue Performance of Commercially Produced Nitinol Samples versus Sputter-Deposited Nitinol. Journal of Materials Engineering and Performance, 2014, 23, 2437-2445.	2.5	25

108 Cascaded SMA-Film Based Elastocaloric Cooling. , 2019, , .

#	Article	IF	CITATIONS
109	Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography. Microelectronic Engineering, 2005, 78-79, 442-447.	2.4	24
110	The biocompatibility and mechanical properties of cylindrical NiTi thin films produced by magnetron sputtering. Materials Science and Engineering C, 2012, 32, 2523-2528.	7.3	24
111	Thermal-Mechanical Noise in Resonant Thin-Film Magnetoelectric Sensors. IEEE Sensors Journal, 2017, 17, 2338-2348.	4.7	24
112	Modeling and Analysis of Noise Sources for Thin-Film Magnetoelectric Sensors Based on the Delta-E Effect. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 2771-2779.	4.7	24
113	Stress-induced remagnetization in magnetostrictive films. Journal of Applied Physics, 2004, 95, 6861-6863.	2.5	23
114	Magnetoelectric effect in sputtered composites. Journal of Applied Physics, 2005, 97, 10Q301.	2.5	23
115	Influence of the quality factor on the signal to noise ratio of magnetoelectric sensors based on the delta-E effect. Applied Physics Letters, 2019, 114, .	3.3	23
116	Magnetic particle mapping using magnetoelectric sensors as an imaging modality. Scientific Reports, 2019, 9, 2086.	3.3	23
117	Materials development for thin film actuators. Microsystem Technologies, 1995, 1, 178-184.	2.0	22
118	Shape memory effect and magnetostriction of sputtered NiMnGa thin films. , 2003, , .		22
119	Magnetic vector field sensor using magnetoelectric thin-film composites. IEEE Transactions on Magnetics, 2005, 41, 3667-3669.	2.1	22
120	Kinetic Binding Analysis of Aptamers Targeting HIV-1 Proteins by a Combination of a Microbalance Array and Mass Spectrometry (MAMS). Journal of Proteome Research, 2009, 8, 3568-3577.	3.7	22
121	Revisiting magnetic stripe domains — anisotropy gradient and stripe asymmetry. Journal of Applied Physics, 2013, 113, 073903.	2.5	22
122	Exchange biased magnetoelectric composites for vector field magnetometers. Journal of Applied Physics, 2013, 113, .	2.5	22
123	Shape memory alloy engine for high efficiency low-temperature gradient thermal to electrical conversion. Applied Energy, 2019, 251, 113277.	10.1	22
124	Origami-inspired thin-film shape memory alloy devices. Scientific Reports, 2021, 11, 10988.	3.3	22
125	Application of a Multilayered Magnetostrictive Film to a Micromachined 2-D Optical Scanner. Journal of Microelectromechanical Systems, 2004, 13, 264-271.	2.5	21
126	Microscopic magnetic and high-frequency properties of a stress sensor using FeCoBSi magnetostrictive thin films. IEEE Transactions on Magnetics, 2005, 41, 3691-3693.	2.1	21

#	Article	IF	CITATIONS
127	Fabrication of TiNi thin film stents. Smart Materials and Structures, 2009, 18, 104010.	3.5	21
128	Polycrystalline and amorphous MgZnCa thin films. Corrosion Science, 2012, 63, 234-238.	6.6	21
129	Elastocaloric cooling using shape memory alloy films. Journal of Physics: Conference Series, 2013, 476, 012138.	0.4	21
130	Specific targeting of ultrasound contrast agent (USCA) for diagnostic application: an in vitro feasibility study based on SAW biosensor. Biosensors and Bioelectronics, 2005, 20, 1829-1835.	10.1	20
131	Time-resolved scanning electron microscopy with polarization analysis. Applied Physics Letters, 2016, 108, .	3.3	20
132	The impact of O ₂ /Ar ratio on morphology and functional properties in reactive sputtering of metal oxide thin films. Nanotechnology, 2019, 30, 235603.	2.6	20
133	Quantitative Evaluation for Magnetoelectric Sensor Systems in Biomagnetic Diagnostics. Sensors, 2022, 22, 1018.	3.8	20
134	Analysis of proteolytic degradation of a crude protein mixture using a surface acoustic wave sensor. Biosensors and Bioelectronics, 2007, 22, 2360-2365.	10.1	19
135	Piezotronicâ€based magnetoelectric sensor: Fabrication and response. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2208-2215.	1.8	19
136	Bistability in a multiferroic composite resonator. Applied Physics Letters, 2018, 113, .	3.3	19
137	Magnetoelastic thin films for high-frequency applications. IEEE Transactions on Magnetics, 2001, 37, 2690-2692.	2.1	18
138	Sputter deposition of NiTi to investigate the Ti loss rate as a function of composition from cast melted targets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 429-433.	5.6	18
139	Local stress engineering of magnetic anisotropy in soft magnetic thin films. Applied Physics Letters, 2009, 94, .	3.3	18
140	Non-contact strain measurements based on inverse magnetostriction. Sensors and Actuators A: Physical, 2010, 158, 224-230.	4.1	18
141	Magnetron Sputtering a New Fabrication Method of Iron Based Biodegradable Implant Materials. Advances in Materials Science and Engineering, 2015, 2015, 1-9.	1.8	18
142	Highly strain-sensitive magnetostrictive tunnel magnetoresistance junctions. Journal of Magnetism and Magnetic Materials, 2015, 384, 308-313.	2.3	18
143	Fast corroding, thin magnesium coating displays antibacterial effects and low cytotoxicity. Biofouling, 2017, 33, 294-305.	2.2	18
144	Magnetic Sensitivity of Bending-Mode Delta-E-Effect Sensors. Physical Review Applied, 2019, 12, .	3.8	18

#	Article	IF	CITATIONS
145	Multi-Mode Love-Wave SAW Magnetic-Field Sensors. Sensors, 2020, 20, 3421.	3.8	18
146	Correlation between phase compatibility and efficient energy conversion in Zr-doped Barium Titanate. Scientific Reports, 2020, 10, 3496.	3.3	18
147	Characterization of magnetic tunnel junctions (MTJ) with magnetostrictive free layer materials. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 2023-2024.	2.3	17
148	High-Frequency Properties of FeCoSiB Thin Films With Crossed Anisotropy. IEEE Transactions on Magnetics, 2004, 40, 2703-2705.	2.1	17
149	High ultimate tensile stress in nano-grained superelastic NiTi thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 415, 304-308.	5.6	17
150	Artificial Single Variant Martensite in Freestanding Fe ₇₀ Pd ₃₀ Films Obtained by Coherent Epitaxial Growth. Advanced Materials, 2010, 22, 2668-2671.	21.0	17
151	Capability of Sputtered Micro-patterned NiTi Thick Films. Shape Memory and Superelasticity, 2015, 1, 286-293.	2.2	17
152	Structuring of sputtered superelastic NiTi thin films by photolithography and etching. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 623-625.	5.6	16
153	Self-sensing atomic force microscopy cantilevers based on tunnel magnetoresistance sensors. Applied Physics Letters, 2013, 102, 153104.	3.3	16
154	Amorphous FeCoSiB for exchange bias coupled and decoupled magnetoelectric multilayer systems: Real-structure and magnetic properties. Journal of Applied Physics, 2014, 116, 134302.	2.5	16
155	Generalized Magnetic Frequency Conversion for Thin-Film Laminate Magnetoelectric Sensors. IEEE Sensors Journal, 2017, 17, 1373-1383.	4.7	16
156	Numerical simulation and experimental investigation of the elastocaloric cooling effect in sputter-deposited TiNiCuCo thin films. Continuum Mechanics and Thermodynamics, 2018, 30, 53-68.	2.2	16
157	Sensitivity and noise analysis of SAW magnetic field sensors with varied magnetostrictive layer thicknesses. Sensors and Actuators A: Physical, 2020, 311, 111998.	4.1	16
158	Characterization of magnetostrictive TMR pressure sensors by MOKE. Journal of Magnetism and Magnetic Materials, 2007, 316, e223-e225.	2.3	15
159	Permeability and Magnetic Properties of Ferromagnetic NiFe/FeCoBSi Bilayers for High-Frequency Applications. IEEE Transactions on Magnetics, 2007, 43, 2624-2626.	2.1	15
160	Noise Analysis and Comparison of Phase- and Frequency-Detecting Readout Systems: Application to SAW Delay Line Magnetic Field Sensor. IEEE Sensors Journal, 2019, 19, 8000-8008.	4.7	15
161	Direct Link between Specific Magnetic Domain Activities and Magnetic Noise in Modulated Magnetoelectric Sensors. Physical Review Applied, 2020, 13, .	3.8	15
162	High-frequency magnetoelastic multilayer thin films and applications. IEEE Transactions on Magnetics, 2003, 39, 3062-3067.	2.1	14

#	Article	IF	CITATIONS
163	MEMS-Based AlScN Resonating Energy Harvester With Solidified Powder Magnet. Journal of Microelectromechanical Systems, 2019, 28, 1019-1031.	2.5	14
164	Frequency tunable resonant magnetoelectric sensors for the detection of weak magnetic field. Journal of Micromechanics and Microengineering, 2020, 30, 075009.	2.6	14
165	Tuning crystallographic compatibility to enhance shape memory in ceramics. Physical Review Materials, 2019, 3, .	2.4	14
166	Magneto-optic indicator film observations of domain motion in magnetostrictive materials under stress. Journal of Applied Physics, 2004, 95, 6948-6950.	2.5	13
167	Multifunctional FeCo/TiN Multilayer Thin Films with Combined Magnetic and Protective Properties. Advanced Engineering Materials, 2009, 11, 969-975.	3.5	13
168	Method for Fabricating Miniaturized NiTi Self-Expandable Thin Film Devices with Increased Radiopacity. Shape Memory and Superelasticity, 2016, 2, 391-398.	2.2	13
169	Tunable Strain in Magnetoelectric ZnO Microrod Composite Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 25571-25577.	8.0	13
170	Cobalt Gradient Evolution in Sputtered TiNiCuCo Films for Elastocaloric Cooling. Physica Status Solidi (B): Basic Research, 2018, 255, 1700299.	1.5	13
171	Fabrication and Characterization of Freestanding NiTi Based Thin Film Materials for Shape Memory Micro-actuator Applications. Shape Memory and Superelasticity, 2019, 5, 327-335.	2.2	13
172	Fundamental Noise Limits and Sensitivity of Piezoelectrically Driven Magnetoelastic Cantilevers. Journal of Microelectromechanical Systems, 2020, 29, 1347-1361.	2.5	13
173	Exploding and weeping ceramics. Nature, 2021, 599, 416-420.	27.8	13
174	Demonstration of magnetoelectric scanning probe microscopy. Review of Scientific Instruments, 2007, 78, 106103.	1.3	12
175	Magnetic moment investigation by frequency mixing techniques. Review of Scientific Instruments, 2009, 80, 115106.	1.3	12
176	Direct measurements of field-induced strain at magnetoelectric interfaces by grazing incidence x-ray diffraction. Applied Physics Letters, 2013, 102, 011601.	3.3	12
177	Nitinol: Tubing versus sputtered film – microcleanliness and corrosion behavior. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1176-1181.	3.4	12
178	Suppression of abnormal grain growth in K0.5Na0.5NbO3: phase transitions and compatibility. Scientific Reports, 2019, 9, 19775.	3.3	12
179	Thin-Film-Based SAW Magnetic Field Sensors. Sensors, 2021, 21, 8166.	3.8	12
180	Berührungslose Magnetoelastische Sensoren (Remotely Interrogated Magnetoelastic Sensors). TM Technisches Messen, 2001, 68, .	0.7	11

#	Article	IF	CITATIONS
181	Processing and Damping Properties of Sputtered NiTi Thin Films for Tools in Machining Processes. Journal of Materials Engineering and Performance, 2011, 20, 500-505.	2.5	11
182	Evolution of Temperature Profiles during Stress-Induced Transformation in NiTi Thin Films. Materials Science Forum, 0, 738-739, 287-291.	0.3	11
183	Giant magnetostrictive TbFe/Fe multilayers. Journal of Alloys and Compounds, 1997, 258, 133-137.	5.5	11
184	TiNiHf/SiO ₂ /Si shape memory film composites for bi-directional micro actuation. International Journal of Smart and Nano Materials, 2022, 13, 293-314.	4.2	11
185	High-frequency magnetic properties of FeCoBSi/SiO/sub 2/ and (FeCo/CoB)/SiO/sub 2/ multilayer thin films. IEEE Transactions on Magnetics, 2003, 39, 3166-3168.	2.1	10
186	Microstructured Nickel-Titanium Thin Film Leaflets for Hybrid Tissue Engineered Heart Valves Fabricated by Magnetron Sputter Deposition. Cardiovascular Engineering and Technology, 2016, 7, 69-77.	1.6	10
187	Cell adhesion on NiTi thin film sputter-deposited meshes. Materials Science and Engineering C, 2016, 59, 611-616.	7.3	10
188	Power-Source-Free Analysis of Pyroelectric Energy Conversion. Physical Review Applied, 2019, 12, .	3.8	10
189	Phase Noise of SAW Delay Line Magnetic Field Sensors. Sensors, 2021, 21, 5631.	3.8	10
190	Zero Hysteresis in Shape-Memory TI-NI-X Films (X = CU, PD) Under Constraint. Materials Research Society Symposia Proceedings, 1999, 604, 117.	0.1	9
191	Magnetoelastic hysteresis in 5M NiMnGa single crystals. Scripta Materialia, 2008, 58, 1022-1024.	5.2	9
192	Fabrication and Evaluation of Nitinol Thin Film Heart Valves. Cardiovascular Engineering and Technology, 2014, 5, 308-316.	1.6	9
193	Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation. Biomedical Microdevices, 2016, 18, 106.	2.8	9
194	Magnetron sputtered freestanding MgAg films with ultra-low corrosion rate. Acta Biomaterialia, 2019, 98, 81-87.	8.3	9
195	Microfabricated bioelectrodes on self-expandable NiTi thin film devices for implants and diagnostic instruments. Biosensors and Bioelectronics, 2020, 153, 112034.	10.1	9
196	Sacrificial protection of Mg-based resorbable implant alloy by magnetron sputtered Mg5Gd alloy coating: A short-term study. Corrosion Science, 2021, 189, 109590.	6.6	9
197	Processing and application of magnetoelastic thin films in high-frequency devices. Microelectronic Engineering, 2003, 67-68, 588-594.	2.4	8
198	Influence of strain on the high-frequency magnetic properties of FeCoBSi thin films. Physica Status Solidi A, 2004, 201, 3319-3324.	1.7	8

#	Article	IF	CITATIONS
199	Magnetostrictive LC Circuit Sensors. Materials Transactions, 2004, 45, 244-248.	1.2	8
200	Superelastic NiTi Thin Films for Medical Applications. Advances in Science and Technology, 0, , .	0.2	8
201	Local magnetization and strain in single magnetoelectric microrod composites. Applied Physics Letters, 2013, 103, 123111.	3.3	8
202	Mechanical properties and corrosion behaviour of freestanding, precipitate-free magnesium WE43 thin films. International Journal of Materials Research, 2013, 104, 286-292.	0.3	8
203	Adaptive Acoustic Noise Cancellation for Magnetoelectric Sensors. IEEE Sensors Journal, 2015, 15, 5804-5812.	4.7	8
204	Comparison of Efficacy, Embolism Rate and Safety of Thrombectomy with Stent Retrievers in an Anterior Circulation Stroke Model. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2018, 190, 1053-1058.	1.3	8
205	Acoustically Driven Ferromagnetic Resonance in Diverse Ferromagnetic Thin Films. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	8
206	Giant Magnetostrictive Multilayer Thin Film Transducers. Materials Research Society Symposia Proceedings, 1996, 459, 565.	0.1	7
207	Magnetomechanical instability in FeTb/Fe multilayers. Journal of Applied Physics, 1998, 83, 7264-7266.	2.5	7
208	Magnetic mesostructure of giant magnetostrictive spring magnet type multilayers. Journal of Applied Physics, 1999, 85, 6238-6240.	2.5	7
209	Fabrication of Toroidal Microinductors for RF Applications. IEEE Transactions on Magnetics, 2009, 45, 4770-4772.	2.1	7
210	Micropatterned freestanding magnetron sputtered Mg-alloy scaffolds. BioNanoMaterials, 2015, 16, .	1.4	7
211	Martensite adaption through epitaxial nano transition layers in TiNiCu shape memory alloys. Journal of Applied Crystallography, 2016, 49, 1009-1015.	4.5	7
212	Magnetically driven energy-harvester with monolithically integrated high-energy-density magnets. , 2017, , .		7
213	Magnetron Sputtering as a Fabrication Method for a Biodegradable Fe32Mn Alloy. Materials, 2017, 10, 1196.	2.9	7
214	Magnetron-Sputtered, Biodegradable FeMn Foils: The Influence of Manganese Content on Microstructure, Mechanical, Corrosion, and Magnetic Properties. Materials, 2018, 11, 482.	2.9	7
215	(Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 thin films prepared by PLD: Relaxor properties and complex microstructure. Journal of Applied Physics, 2019, 125, .	2.5	7
216	Integration of AIN piezoelectric thin films on ultralow fatigue TiNiCu shape memory alloys. Journal of Materials Research, 2020, 35, 1298-1306.	2.6	7

#	Article	IF	CITATIONS
217	Size-dependence of zirconia-based ceramics via deformation twinning. Extreme Mechanics Letters, 2021, 42, 101124.	4.1	7
218	Composites of different shape memory alloys and polymers for complex actuator motions. European Physical Journal Special Topics, 2003, 112, 1163-1168.	0.2	7
219	Sputter Deposition Of TiNi And TiNiPd Films Displaying The Two Way Shape Memory Effect. , 0, , .		6
220	Crossed anisotropy magnetic cores for integrated inductors. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1487-1490.	2.3	6
221	Near Net-Shape Fabrication of Superelastic NiTi Devices by Sputtering and Photoetching. Materials Transactions, 2006, 47, 523-526.	1.2	6
222	Rotational UV lithography device for cylindrical substrate exposure. Review of Scientific Instruments, 2009, 80, 015103.	1.3	6
223	Morphological and magnetic properties of TiO2/Fe50Co50 composite films. Journal of Materials Science, 2011, 46, 4638-4645.	3.7	6
224	Comparison of Frequency Conversion Techniques for Magnetoelectric Sensors. Procedia Engineering, 2015, 120, 940-943.	1.2	6
225	Microstructures of magnetron sputtered Fe Au thin films. International Journal of Materials Research, 2015, 106, 103-107.	0.3	6
226	Mechanical Properties and In Vitro Degradation of Sputtered Biodegradable Fe-Au Foils. Materials, 2016, 9, 928.	2.9	6
227	Improved Magnetic Frequency Conversion Approach for Magnetoelectric Sensors. , 2017, 1, 1-4.		6
228	Frequency-tunable nickel-titanium substrates for magnetoelectric sensors. AIP Advances, 2018, 8, .	1.3	6
229	Oscillator Phase Noise Suppression in Surface Acoustic Wave Sensor Systems. IEEE Sensors Journal, 2018, 18, 4975-4980.	4.7	6
230	Coherent Precipitates as a Condition for Ultra-Low Fatigue in Cu-Rich Ti53.7Ni24.7Cu21.6 Shape Memory Alloys. Shape Memory and Superelasticity, 2021, 7, 526-540.	2.2	6
231	Imaging of Love Waves and Their Interaction with Magnetic Domain Walls in Magnetoelectric Magnetic Field Sensors. Advanced Electronic Materials, 2022, 8, .	5.1	6
232	Mechanical Behaviour and Corrosion Performance of Thin Film Magnesium WE Alloys. Materials Science Forum, 2011, 690, 286-289.	0.3	5
233	A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans. Beilstein Journal of Nanotechnology, 2015, 6, 451-461.	2.8	5
234	Combining Sensor and Protective Functionalities in Ferromagnetic Nanocomposite Thin Films for Applications in Harsh Environments. Advanced Engineering Materials, 2016, 18, 739-745.	3.5	5

Eckhard Quandt

#	Article	IF	CITATIONS
235	Mechanical Properties of Magnetron Sputtered Free Standing Mg-Ag Alloy Films. Frontiers in Materials, 2019, 6, .	2.4	5
236	Hybrid molecular beam epitaxy growth of BaTiO3 films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	5
237	Development of Microactuators Based on the Shape Memory Effect. European Physical Journal Special Topics, 1995, 05, C8-1187-C8-1192.	0.2	5
238	Computation and measurement of characteristic energy-loss large-angle convergent-beam patterns of molybdenum selenide. Ultramicroscopy, 1993, 49, 210-219.	1.9	4
239	Giant magnetostrictive multilayers for thin film actuators. , 0, , .		4
240	Giant Magnetostrictive Thin Film Technologies. , 2000, , 323-343.		4
241	<title>Magnetoelastic thin films and multilayers for high-frequency applications</title> . , 2002, , .		4
242	Superelasticity of free-standing NiTi films depending on the oxygen impurity of the used targets. Materialwissenschaft Und Werkstofftechnik, 2004, 35, 359-364.	0.9	4
243	Switching of magnetostrictive micro-dot arrays by mechanical strain. IEEE Transactions on Magnetics, 2005, 41, 3505-3507.	2.1	4
244	Non-contact temperature determination of embedded magnetic phases of hard coatings by exploitation of the magnetic hysteresis. Sensors and Actuators A: Physical, 2012, 178, 104-109.	4.1	4
245	Direct measurements of field-induced strain in magnetoelectric composites by X-ray diffraction studies of forbidden reflections. Journal of Applied Physics, 2013, 113, 124303.	2.5	4
246	Design Characterization of Thin Film Flow Diverter Stents (FDS) Based on SMA's: FEA, CFD and MRI Study. Shape Memory and Superelasticity, 2019, 5, 195-205.	2.2	4
247	A stress sensor based on a silicon field effect transistor comprising a piezoelectric AlN gate dielectric. Journal of Materials Science: Materials in Electronics, 2019, 30, 11493-11498.	2.2	4
248	Development and co-integration of a SMA/Si bimorph nanoactuator for Si photonic circuits. Microelectronic Engineering, 2020, 225, 111257.	2.4	4
249	High-Cycle Mechanical Fatigue Performance of Sputtered Nitinol. Journal of Materials Engineering and Performance, 2020, 29, 1892-1900.	2.5	4
250	Fabrication of stable monoclinic zirconia-based ceramics. Ceramics International, 2021, 47, 8692-8696.	4.8	4
251	Stress sensors based on magnetostrictive thin films. Transactions of the Magnetics Society of Japan, 2003, 3, 115-117.	0.5	4
252	Magnetoelectronical Sensors for Mechanical Measurements. ECS Transactions, 2007, 3, 223-233.	0.5	3

#	Article	IF	CITATIONS
253	Monitoring magnetostriction by a quantum tunnelling strain sensor. Sensors and Actuators A: Physical, 2012, 183, 28-33.	4.1	3
254	Structural Characterization of Sputtered Fe ₇₀ Pd ₃₀ Thin Films During Ex Situ and In Situ TEM Heating. Advanced Engineering Materials, 2012, 14, 716-723.	3.5	3
255	Inverse magnetostrictive stress sensors based on crossed pinned CoFeB/MgO/CoFeB tunnel junctions. Journal of Applied Physics, 2018, 124, 064501.	2.5	3
256	Contactless monitoring of temperature change in cutting inserts by application of hard coatings and ferromagnetic film sensor phases. Sensors and Actuators A: Physical, 2019, 296, 278-285.	4.1	3
257	Nanostabilization of tetragonal distorted FeCo variants in ultra-thin FeCo/TiN multilayer films. Materials Characterization, 2021, 172, 110871.	4.4	3
258	Tailoring growth modes by excess alkali addition in magnetron sputtered potassium sodium niobate thin films. Materials Today Communications, 2021, 27, 102221.	1.9	3
259	A realistic way to investigate the design, and mechanical properties of flow diverter stents. Expert Review of Medical Devices, 2021, 18, 569-579.	2.8	3
260	A Novel Optical Scanner with Integrated Two-Dimensional Magnetostrictive Actuation and Two-Dimensional Piezoresistive Detection. , 2001, , 1300-1303.		3
261	Direct parallel detection of energy-resolved large-angle convergent-beam patterns. Ultramicroscopy, 1990, 33, 15-21.	1.9	2
262	Shape Memory Thin Films of the System Ti- (Ni-Pd-Cu). Materials Research Society Symposia Proceedings, 1996, 459, 465.	0.1	2
263	Microstructural Characterization of Nanocrystalline Thin Films by Grazing Incidence Diffraction: Au and Tb _{0.3} Dy _{0.7} Fe ₂ (Terfenol-D). Materials Science Forum, 1998, 278-281, 460-465.	0.3	2
264	<title>MEMS actuators based on smart film materials</title> ., 1998, , .		2
265	Thin Films: Giant Magnetostrictive. , 2001, , 9243-9246.		2
266	Optimization of the \hat{l} "E-effect in thin films and multilayers by magnetic field annealing. , 0, , .		2
267	High-frequency magnetoelastic multilayer thin films and applications. , 0, , .		2
268	Double Coil Permeameter for the Characterization of Magnetic Materials. , 2009, , .		2
269	Depletion sensor for protective high temperature coatings. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 706-712.	1.5	2
270	M(H) shape reconstruction using magnetic spectroscopy. Journal of Magnetism and Magnetic Materials, 2012, 324, 895-902.	2.3	2

#	Article	IF	CITATIONS
271	Protective high temperature coatings with intrinsic depletion sensor. Surface and Coatings Technology, 2014, 245, 117-124.	4.8	2
272	Comparison of reference sensors for noise cancellation of magnetoelectric sensors. , 2016, , .		2
273	Thinâ€Film Patient‧pecific Flow Diverter Stents for the Treatment of Intracranial Aneurysms. Advanced Materials Technologies, 2021, 6, 2100384.	5.8	2
274	Rare Earth Transition Metal Thin Films and Devices. , 2001, , 57-69.		2
275	Magnetostriction measurements with a low-cost magnetostrictive cantilever beam. American Journal of Physics, 2020, 88, 448-455.	0.7	2
276	Giant Magnetostriction in TbFe/FeCo Multilayers. Materials Science Forum, 1998, 287-288, 509-512.	0.3	1
277	Magneto-Mechanical Instability In Fetb/ Fe,feco Multilayers. , 0, , .		1
278	Shape Memory and Magnetostrictive Materials for Mems. Materials Research Society Symposia Proceedings, 1998, 546, 145.	0.1	1
279	Actuator Materials for Small-scale Devices. , 2001, , 35-38.		1
280	Smart motion control by phase-coupled shape memory composites. , 0, , .		1
281	High frequency magnetic properties of FeCoBSi/SiO/sub 2/ and (FeCo/CoB)/SiO/sub 2/ multilayer thin films. , 0, , .		1
282	Superelastic Thin Film NiTi-Polymer Composites and Sputtered Thin-walled Tubes. Materials Research Society Symposia Proceedings, 2004, 855, 7.	0.1	1
283	Superelastic thin films and applications for medical devices. , 0, , 370-384.		1
284	Shape memory thin film composite microactuators. , 0, , 426-436.		1
285	High aspect ratio free standing ZnO-magnetostrictive mesoscale cylindrical magnetoelectric core shell composite. Materials Research Society Symposia Proceedings, 2012, 1398, 9.	0.1	1
286	Thermal Stability of the Ferromagnetic In-Plane Uniaxial Anisotropy of Fe-Co-Hf-N/Ti-N Multilayer Films for High-Frequency Sensor Applications. IEEE Transactions on Magnetics, 2013, 49, 3870-3873.	2.1	1
287	Track A. Biomaterials and Biocompatibility. Biomedizinische Technik, 2015, 60, S1-30.	0.8	1
288	Functional NiTi grids for in situ straining in the TEM. Ultramicroscopy, 2017, 182, 10-16.	1.9	1

#	Article	IF	CITATIONS
289	Direct observation of intermediate twinning in the phase transformations of ferroelectric potassium sodium niobate. Ceramics International, 2021, 47, 20579-20585.	4.8	1
290	Torsional Characterization of Braided Flow Diverter Stents. Clinical Neuroradiology, 2021, 31, 1181-1186.	1.9	1
291	Bistable Actuators Based on Shape Memory Alloy/ Polymer Composites. , 2022, , .		1
292	Auxetic Superelastic TiNiCuCo Sputtered Thin-Films For Stretchable Electronics. , 2022, , .		1
293	Switching of magnetostrictive micro-dot arrays by mechanical strain. , 2005, , .		0
294	Permeameter For The Characterization Of Magnetic Thin Films Up To $15~ ext{GHz.}$, 2008, , .		0
295	Using Thin Film Stress for Nanoscaled Sensors. Materials Science Forum, 2010, 638-642, 2028-2033.	0.3	0
296	Thin Films: Giant Magnetostrictive. , 2016, , .		0
297	Magnetoelectric Microwave Magnetic Field Sensor at 3 CHz. , 2018, , .		0
298	Magnetostrictive LC-circuits as mechanical sensors. , 2004, , 15-22.		0
299	10.1063/1.4945053.1., 2016, , .		0