Karen Sermon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3502365/publications.pdf

Version: 2024-02-01

567281 454955 1,168 30 15 30 h-index citations g-index papers 32 32 32 1408 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adjuncts in the IVF laboratory: where is the evidence for â€~add-on' interventions?. Human Reproduction, 2017, 32, 485-491.	0.9	123
2	Embryo implantation after biopsy of one or two cells from cleavage-stage embryos with a view to preimplantation genetic diagnosis. Prenatal Diagnosis, 2000, 20, 1030-1037.	2.3	120
3	The why, the how and the when of PGS 2.0: current practices and expert opinions of fertility specialists, molecular biologists, and embryologists. Molecular Human Reproduction, 2016, 22, 845-857.	2.8	116
4	Preimplantation genetic testing for aneuploidy by microarray analysis of polar bodies in advanced maternal age: a randomized clinical trial. Human Reproduction, 2018, 33, 1767-1776.	0.9	113
5	Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells. American Journal of Human Genetics, 2015, 96, 894-912.	6.2	110
6	Preimplantation genetic screening 2.0: the theory. Molecular Human Reproduction, 2016, 22, 839-844.	2.8	85
7	CpG Methylation, a Parent-of-Origin Effect for Maternal-Biased Transmission of Congenital Myotonic Dystrophy. American Journal of Human Genetics, 2017, 100, 488-505.	6.2	74
8	Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability. Stem Cell Reports, 2016, 6, 330-341.	4.8	72
9	Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. Human Reproduction, 2014, 29, 1603-1609.	0.9	57
10	Genetic and epigenetic factors which modulate differentiation propensity in human pluripotent stem cells. Human Reproduction Update, 2018, 24, 162-175.	10.8	39
11	Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy. Expert Review of Molecular Diagnostics, 2017, 17, 71-82.	3.1	35
12	Preimplantation genetic diagnosis (PGD), a collaborative activity of clinical genetic departments and IVF centres. Prenatal Diagnosis, 2001, 21, 1086-1092.	2.3	31
13	FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells. Biochemical and Biophysical Research Communications, 2012, 426, 380-385.	2.1	30
14	Random Mutagenesis, Clonal Events, and Embryonic or Somatic Origin Determine the mtDNA Variant Type and Load in Human Pluripotent StemÂCells. Stem Cell Reports, 2018, 11, 102-114.	4.8	23
15	Two pregnancies after preimplantation genetic diagnosis for osteogenesis imperfecta type I and type IV. Human Genetics, 2000, 106, 605-613.	3.8	16
16	Accurate and comprehensive analysis of single nucleotide variants and large deletions of the human mitochondrial genome in DNA and single cells. European Journal of Human Genetics, 2017, 25, 1229-1236.	2.8	16
17	Uncovering low-level mosaicism in human embryonic stem cells using high throughput single cell shallow sequencing. Scientific Reports, 2019, 9, 14844.	3.3	12
18	On the origins and fate of chromosomal abnormalities in human preimplantation embryos: an unsolved riddle. Molecular Human Reproduction, 2022, 28, .	2.8	12

#	Article	IF	CITATIONS
19	In silico discovery of a FOXM1 driven embryonal signaling pathway in therapy resistant neuroblastoma tumors. Scientific Reports, 2018, 8, 17468.	3.3	11
20	Human embryonic stem cells show low-grade microsatellite instability. Molecular Human Reproduction, 2014, 20, 981-989.	2.8	10
21	The Role of D4Z4-Encoded Proteins in the Osteogenic Differentiation of Mesenchymal Stromal Cells Isolated from Bone Marrow. Stem Cells and Development, 2015, 24, 2674-2686.	2.1	10
22	Two pregnancies after preimplantation genetic diagnosis for osteogenesis imperfecta type I and type IV. Human Genetics, 2000, 106, 605-613.	3.8	8
23	A High Proliferation Rate is Critical for Reproducible and Standardized Embryoid Body Formation from Laminin-521-Based Human Pluripotent Stem Cell Cultures. Stem Cell Reviews and Reports, 2016, 12, 721-730.	5.6	8
24	Myotonic dystrophy type 1 embryonic stem cells show decreased myogenic potential, increased CpG methylation at the <code><i>DMPK</i></code> locus and RNA mis-splicing. Biology Open, 2022, 11, .	1.2	8
25	lodine Dose of Administered Contrast Media Affects the Level of Radiation-Induced DNA Damage During Cardiac CT Scans. American Journal of Roentgenology, 2019, 213, 404-409.	2.2	7
26	Endogenous suppression of WNT signalling in human embryonic stem cells leads to low differentiation propensity towards definitive endoderm. Scientific Reports, 2021, 11, 6137.	3.3	6
27	Detection of Heteroplasmic Variants in the Mitochondrial Genome through Massive Parallel Sequencing. Bio-protocol, 2019, 9, e3283.	0.4	6
28	<i>MSH2</i> knock-down shows CTG repeat stability and concomitant upstream demethylation at the <i>DMPK</i> locus in myotonic dystrophy type 1 human embryonic stem cells. Human Molecular Genetics, 2021, 29, 3566-3577.	2.9	4
29	Impaired catabolism of free oligosaccharides due to MAN2C1 variants causes a neurodevelopmental disorder. American Journal of Human Genetics, 2022, 109, 345-360.	6.2	4
30	Mitochondrial DNA variants segregate during human preimplantation development into genetically different cell lineages that are maintained postnatally. Human Molecular Genetics, 2022, 31, 3629-3642.	2.9	2