
Yoshihiko Murakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3502186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature-Responsive Polysaccharide Microparticles Containing Nanoparticles: Release of Multiple Cationic/Anionic Compounds. Materials, 2022, 15, 4717.	2.9	2
2	Precise Control of the Surface and Internal Morphologies of Porous Particles Prepared Using a Spontaneous Emulsification Method. Langmuir, 2021, 37, 3075-3085.	3.5	0
3	Facile preparation of porous polymeric sheets with different sizes of pores on both sides using spontaneous emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126149.	4.7	2
4	Thermosensitive polysaccharide particles for pulmonary drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123720.	4.7	6
5	A zeolite as a tool for successful refolding of PEGylated proteins and their reassembly with tertiary structures. Biotechnology Progress, 2019, 35, e2853.	2.6	3
6	Solubilized eggshell membrane supplies a type III collagen-rich elastic dermal papilla. Cell and Tissue Research, 2019, 376, 123-135.	2.9	15
7	Chitosan gel sheet containing drug carriers with controllable drug-release properties. Colloids and Surfaces B: Biointerfaces, 2018, 163, 257-265.	5.0	21
8	PLA- and PLA/PLGA-Emulsion Composite Biomaterial Sheets for the Controllable Sustained Release of Hydrophilic Compounds. Materials, 2018, 11, 2588.	2.9	9
9	Poly(ε-caprolactone) (PCL) hybrid sheets containing polymeric micelles: Effects of inner structures on the material properties of the sheets. Materials Science and Engineering C, 2017, 72, 325-331.	7.3	11
10	RAFT-based synthesis and the gelation property of telechelic polymers that can immobilize biomacromolecules. Journal of Polymer Science Part A, 2017, 55, 1356-1365.	2.3	6
11	Dual drug release from hydrogels covalently containing polymeric micelles that possess different drug release properties. Colloids and Surfaces B: Biointerfaces, 2017, 153, 19-26.	5.0	19
12	Successful PEGylation of hollow encapsulin nanoparticles from Rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties. Biomaterials Science, 2017, 5, 1082-1089.	5.4	16
13	Synergic modulation of the inflammatory state of macrophages utilizing anti-oxidant and phosphatidylserine-containing polymer–lipid hybrid nanoparticles. MedChemComm, 2017, 8, 1514-1520.	3.4	6
14	Porous PLGA microparticles formed by "one-step―emulsification for pulmonary drug delivery: The surface morphology and the aerodynamic properties. Colloids and Surfaces B: Biointerfaces, 2017, 159, 318-326.	5.0	25
15	Chitosan Gel Sheet Containing Polymeric Micelles: Synthesis and Gelation Properties of PEG-Grafted Chitosan. Materials, 2017, 10, 1075.	2.9	8
16	Design of Dithiobenzoate RAFT Agent Bearing Hydroxyl Groups and Its Application in RAFT Polymerization for Telechelic Diol Polymers. Polymers, 2017, 9, 44.	4.5	2
17	Packaging guest proteins into the encapsulin nanocompartment from <i>Rhodococcus erythropolis</i> N771. Biotechnology and Bioengineering, 2015, 112, 13-20.	3.3	73
18	One-pot facile preparation of PEG-modified PLGA nanoparticles: Effects of PEG and PLGA on release properties of the particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 66-72.	4.7	26

#	Article	IF	CITATIONS
19	Poly(É́›-caprolactone) (PCL)–polymeric micelle hybrid sheets for the incorporation and release of hydrophilic proteins. Colloids and Surfaces B: Biointerfaces, 2015, 127, 292-299.	5.0	16
20	Unexpected and Successful "One-Step―Formation of Porous Polymeric Particles Only by Mixing Organic Solvent and Water under "Low-Energy-Input―Conditions. Langmuir, 2014, 30, 3329-3336.	3.5	18
21	Hingeâ€Linked Polymer Gels: A Rigid Network Crossâ€Linked with a Rotatable Tetrasubstituted Ferrocene. Macromolecular Chemistry and Physics, 2013, 214, 1356-1362.	2.2	7
22	The hydrogel containing a novel vesicleâ€like soft crosslinker, a "trilayered―polymeric micelle, shows characteristic rheological properties. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 124-131.	2.1	17
23	Design of novel sheet-shaped chitosan hydrogel for wound healing: A hybrid biomaterial consisting of both PEG-grafted chitosan and crosslinkable polymeric micelles acting as drug containers. Materials Science and Engineering C, 2013, 33, 3697-3703.	7.3	51
24	A free-standing, sheet-shaped, "hydrophobic―biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic―compounds. Colloids and Surfaces B: Biointerfaces, 2013, 102, 597-603.	5.0	20
25	Synthesis of a "molecular rope curtain†Preparation and characterization of a sliding graft copolymer with grafted poly(ethylene glycol) side chains by the "grafting onto†strategy. Journal of Polymer Science Part A, 2012, 50, 488-494.	2.3	15
26	Rapid preparation of monodisperse biodegradable polymer nanospheres using a membrane emulsification technique under low gas pressure. Journal of Polymer Research, 2011, 18, 2077-2085.	2.4	12
27	Successful preferential formation of a novel macromolecular assembly—Trilayered polymeric micelle—That can incorporate hydrophilic compounds: The optimization of factors affecting the micelle formation from amphiphilic block copolymers. Colloids and Surfaces B: Biointerfaces, 2011, 84, 346-353.	5.0	20
28	Development of PEG–PLA/PLGA microparticles for pulmonary drug delivery prepared by a novel emulsification technique assisted with amphiphilic block copolymers. Colloids and Surfaces B: Biointerfaces, 2011, 87, 433-438.	5.0	40
29	Facile technique for preparing organic–inorganic composite particles: Monodisperse poly(lactide-co-glycolide) (PLGA) particles having silica nanoparticles on the surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 109-117.	4.7	20
30	Novel one-pot facile technique for preparing nanoparticles modified with hydrophilic polymers on the surface via block polymer-assisted emulsification/evaporation process. Colloids and Surfaces B: Biointerfaces, 2010, 78, 85-91.	5.0	24
31	Trilayered polymeric micelle: A newly developed macromolecular assembly that can incorporate hydrophilic compounds. Colloids and Surfaces B: Biointerfaces, 2010, 79, 198-204.	5.0	22
32	Polyfunctional nanometric particles obtained from lignin, a woody biomass resource. Green Chemistry, 2010, 12, 1914.	9.0	17
33	<i>In vivo</i> and <i>in vitro</i> evaluation of gelation and hemostatic properties of a novel tissueâ€adhesive hydrogel containing a crossâ€ŀinkable polymeric micelle. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 102-108.	3.4	38
34	A simple hemostasis model for the quantitative evaluation of hydrogel-based local hemostatic biomaterials on tissue surface. Colloids and Surfaces B: Biointerfaces, 2008, 65, 186-189.	5.0	42
35	Synthesis and Characterization of a Temperature-responsive Amphiphilic Block Copolymer Containing a Liquid Crystalline Unit. Chemistry Letters, 2008, 37, 1214-1215.	1.3	11
36	A novel synthetic tissue-adhesive hydrogel using a crosslinkable polymeric micelle. Journal of Biomedical Materials Research - Part A, 2007, 80A, 421-427.	4.0	74

Yoshihiko Murakami

#	Article	IF	CITATIONS
37	Hybrid Hydrogels to Which Single-Stranded (ss) DNA Probe Is Incorporated Can Recognize Specific ssDNA. Macromolecules, 2005, 38, 1535-1537.	4.8	60
38	DNA-Responsive Hydrogels That Can Shrink or Swell. Biomacromolecules, 2005, 6, 2927-2929.	5.4	193
39	Characterization of polymer–enzyme complex as a novel biocatalyst for nonaqueous enzymology. Journal of Molecular Catalysis B: Enzymatic, 2003, 22, 79-88.	1.8	30
40	Novel gene assay by probe-regulated simultaneous separation using capillary electrophoresis (CE-PRESS). Journal of Bioscience and Bioengineering, 2003, 96, 95-7.	2.2	1
41	Novel kinetic analysis of enzymatic dipeptide synthesis: Effect of pH and substrates on thermolysin catalysis. Biotechnology and Bioengineering, 2001, 74, 406-415.	3.3	3
42	Title is missing!. Biotechnology Letters, 2001, 23, 125-129.	2.2	22
43	Continuous enzymatic production of peptide precursor in aqueous/organic biphasic medium. , 2000, 69, 57-65.		12
44	Title is missing!. Biotechnology Letters, 1999, 13, 165-168.	0.5	5
45	Complex between α-Chymotrypsin and poly(ethylene glycol) catalytically active in organic media. Biotechnology Letters, 1999, 13, 545-548.	0.5	19
46	Poly(ethylene glycol)-α-chymotrypsin complex catalytically active in anhydrous isooctane. Journal of Bioscience and Bioengineering, 1999, 88, 441-443.	2.2	30
47	Enzymatic Production of ACE Inhibitory Peptides with Hydrolysis of Zein in Aqueous Two-phase System Kagaku Kogaku Ronbunshu, 1999, 25, 244-247.	0.3	1
48	Continuous Enzymatic Synthesis of Peptide Precursor Masking Introduction into Cells Utilizing Extractive Reaction Kagaku Kogaku Ronbunshu, 1999, 25, 206-213.	0.3	3
49	Enzymatic Synthesis of Kyotorphin Precursor Utilizing Surfactant-Coated Enzyme in Organic Media Kagaku Kogaku Ronbunshu, 1999, 25, 240-243.	0.3	1
50	Enzymatic Synthesis of N-formyl-L-aspartyl-L-phenylalanine Methyl Ester (Aspartame Precursor) Utilizing an Extractive Reaction in Aqueous/Organic Biphasic Medium. Biotechnology Letters, 1998, 20, 767-769.	2.2	15
51	Continuous enzymatic synthesis of aspartame precursor at low pH using an extractive reaction. Journal of Bioscience and Bioengineering, 1997, 84, 264-267.	0.9	23