
Zhaosheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3502119/publications.pdf Version: 2024-02-01

7HAOSHENC YU

#	Article	IF	CITATIONS
1	Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Applied Thermal Engineering, 2015, 91, 574-582.	3.0	173
2	A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energy Conversion and Management, 2017, 151, 190-198.	4.4	171
3	Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energy Conversion and Management, 2016, 118, 345-352.	4.4	128
4	Combustion, pyrolysis and char CO2-gasification characteristics of hydrothermal carbonization solid fuel from municipal solid wastes. Fuel, 2016, 181, 905-915.	3.4	127
5	TGA–FTIR analysis of co-combustion characteristics of paper sludge and oil-palm solid wastes. Energy Conversion and Management, 2015, 89, 727-734.	4.4	115
6	Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model). Energy, 2018, 143, 517-532.	4.5	114
7	Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Conversion and Management, 2015, 101, 626-631.	4.4	113
8	Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste. Energy Conversion and Management, 2015, 99, 112-118.	4.4	109
9	Co-pyrolysis of chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS. Energy Conversion and Management, 2018, 177, 582-591.	4.4	99
10	Investigation on thermochemical behavior of co-pyrolysis between oil-palm solid wastes and paper sludge. Bioresource Technology, 2014, 166, 444-450.	4.8	87
11	Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis. Bioresource Technology, 2016, 209, 265-272.	4.8	83
12	Adaptive Neural Output Feedback Control for Nonstrict-Feedback Stochastic Nonlinear Systems With Unknown Backlash-Like Hysteresis and Unknown Control Directions. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 1147-1160.	7.2	83
13	Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM). Bioresource Technology, 2018, 259, 173-180.	4.8	78
14	Co-pyrolysis characters between combustible solid waste and paper mill sludge by TG-FTIR and Py-GC/MS. Energy Conversion and Management, 2017, 144, 114-122.	4.4	76
15	A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS. Bioresource Technology, 2019, 289, 121585.	4.8	76
16	Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior. Bioresource Technology, 2017, 243, 539-547.	4.8	72
17	Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives. Bioresource Technology, 2019, 273, 34-39.	4.8	68
18	Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Conversion and Management, 2019, 192, 1-10.	4.4	67

ZHAOSHENG YU

#	Article	IF	CITATIONS
19	Mathematical modeling of combustion in a grate-fired boiler burning straw and effect of operating conditions under air- and oxygen-enriched atmospheres. Renewable Energy, 2010, 35, 895-903.	4.3	60
20	The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis. Thermochimica Acta, 2017, 653, 71-78.	1.2	60
21	A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives. Applied Thermal Engineering, 2017, 111, 292-300.	3.0	59
22	A study on microwave-assisted fast co-pyrolysis of chlorella and tire in the N2 and CO2 atmospheres. Bioresource Technology, 2018, 250, 821-827.	4.8	57
23	Experimental and kinetic modeling of oxygen-enriched air combustion of municipal solid waste. Waste Management, 2009, 29, 792-796.	3.7	55
24	A Mechanism Study on Hydrothermal Carbonization of Waste Textile. Energy & Fuels, 2016, 30, 7746-7754.	2.5	55
25	Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride. Applied Thermal Engineering, 2018, 136, 9-15.	3.0	55
26	Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis. Energy Conversion and Management, 2016, 117, 367-374.	4.4	52
27	Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris. Bioresource Technology, 2020, 299, 122636.	4.8	52
28	Co-combustion of coal with printing and dyeing sludge: Numerical simulation of the process and related NO X emissions. Fuel, 2015, 139, 606-613.	3.4	51
29	Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: Analytical Py-GC/MS study. Renewable Energy, 2018, 125, 465-471.	4.3	51
30	Study on thermochemical kinetic characteristics and interaction during low temperature oxidation of blended coals. Journal of the Energy Institute, 2015, 88, 221-228.	2.7	49
31	Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Applied Thermal Engineering, 2016, 106, 938-943.	3.0	49
32	Co-pyrolysis kinetics and behaviors of kitchen waste and chlorella vulgaris using thermogravimetric analyzer and fixed bed reactor. Energy Conversion and Management, 2018, 165, 45-52.	4.4	47
33	General distributed activation energy model (C-DAEM) on co-pyrolysis kinetics of bagasse and sewage sludge. Bioresource Technology, 2019, 273, 545-555.	4.8	47
34	Catalytic co-pyrolysis of microwave pretreated chili straw and polypropylene to produce hydrocarbons-rich bio-oil. Bioresource Technology, 2021, 319, 124191.	4.8	47
35	A kinetic study on the effects of alkaline earth and alkali metal compounds for catalytic pyrolysis of microalgae using thermogravimetry. Applied Thermal Engineering, 2014, 73, 357-361.	3.0	46
36	Co-combustion of paper sludge in a 750â€`t/d waste incinerator and effect of sludge moisture content: A simulation study. Fuel, 2018, 217, 617-625.	3.4	45

ZHAOSHENG YU

#	Article	IF	CITATIONS
37	Studies on thermal decomposition behaviors of demineralized low-lipid microalgae by TG-FTIR. Thermochimica Acta, 2018, 660, 101-109.	1.2	41
38	Ultrasonic pretreatment effects on the co-pyrolysis of municipal solid waste and paper sludge through orthogonal test. Bioresource Technology, 2018, 258, 5-11.	4.8	40
39	Microwave pretreatment power and duration time effects on the catalytic pyrolysis behaviors and kinetics of water hyacinth. Bioresource Technology, 2019, 286, 121369.	4.8	34
40	Co-combustion behavior of municipal solid waste and food waste anaerobic digestates: Combustion performance, kinetics, optimization, and gaseous products. Journal of Environmental Chemical Engineering, 2021, 9, 106028.	3.3	34
41	An experimental heat transfer study for helically flowing outside petal-shaped finned tubes with different geometrical parameters. Applied Thermal Engineering, 2007, 27, 268-272.	3.0	31
42	Adaptive neural control for a class of pure-feedback nonlinear time-delay systems with asymmetric saturation actuators. Neurocomputing, 2016, 173, 1461-1470.	3.5	30
43	Effects of microwave pretreatment on catalytic fast pyrolysis of pine sawdust. Bioresource Technology, 2019, 293, 122080.	4.8	27
44	Study on catalytic pyrolysis of eucalyptus to produce aromatic hydrocarbons by Zn-Fe co-modified HZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 2019, 139, 96-103.	2.6	24
45	Catalytic co-pyrolysis behaviors and kinetics of camellia shell and take-out solid waste using pyrolyzer – gas chromatography/mass spectrometry and thermogravimetric analyzer. Bioresource Technology, 2020, 297, 122419.	4.8	23
46	Comparison of catalytic effect on upgrading bio-oil derived from co-pyrolysis of water hyacinth and scrap tire over multilamellar MFI nanosheets and HZSM-5. Bioresource Technology, 2020, 312, 123592.	4.8	21
47	Pollutant emission characteristics and interaction during low-temperature oxidation of blended coal. Journal of the Energy Institute, 2016, 89, 40-47.	2.7	18
48	Preparation of high-value porous carbon by microwave treatment of chili straw pyrolysis residue. Bioresource Technology, 2022, 360, 127520.	4.8	18
49	HCl emission and capture characteristics during PVC and food waste combustion in CO2/O2 atmosphere. Journal of the Energy Institute, 2020, 93, 1036-1044.	2.7	16
50	Forecasting the byproducts generated by hydrothermal carbonisation of municipal solid wastes. Waste Management and Research, 2017, 35, 92-100.	2.2	15
51	Effects of hydrothermal carbonization on catalytic fast pyrolysis of tobacco stems. Biomass Conversion and Biorefinery, 2020, 10, 1221-1236.	2.9	14
52	Effects of baking soda on Co-hydrothermal carbonization of sewage sludge and Chlorella vulgaris: Improved the environmental friendliness of hydrochar incineration process. Journal of Environmental Chemical Engineering, 2021, 9, 106404.	3.3	13
53	Investigation of Rice Straw Combustion by Using Thermogravimetric Analysis. Energy Procedia, 2015, 75, 144-149.	1.8	11
54	Fast Catalytic Co-pyrolysis Characteristics and Kinetics of Chlorella Vulgaris and Municipal Solid Waste over Hierarchical ZSM-5 Zeolite. Bioenergy Research, 2021, 14, 226-240.	2.2	10

ZHAOSHENG YU

#	Article	IF	CITATIONS
55	A study on the deoxidation effect of different acidic zeolites during the co-pyrolysis of aged municipal solid waste and corn stalk. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105319.	2.6	8
56	Comparative study on the synergistic co-pyrolysis of Thlaspi arvense L. seed with different plastics: thermal behaviors, product distributions, and kinetics analysis. Biomass Conversion and Biorefinery, 2023, 13, 6197-6211.	2.9	5
57	Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA). IOP Conference Series: Materials Science and Engineering, 2017, 199, 012054.	0.3	4
58	Decomposition Characteristics and Kinetics of Microalgae in N ₂ and CO ₂ Atmospheres by a Thermogravimetry. Journal of Combustion, 2017, 2017, 1-7.	0.5	4
59	Effects of atmosphere and blending ratios on emission characteristics of pollutants from coâ€combustion of municipal solid waste and aged refuse. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	0.8	3
60	Energy Analysis and Environmental Impacts of Hybrid Giant Napier (Pennisetum Hydridum) Direct-fired Power Generation in South China. IOP Conference Series: Materials Science and Engineering, 2017, 199, 012094.	0.3	2
61	Co-combustion of aged refuse and municipal solid waste under increased N ₂ /O ₂ atmospheres: kinetics analysis, thermodynamic characteristics. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-13.	1.2	0
62	Modifying pyrolysis behavior and products distribution of sewage sludge and water hyacinth by microwave pretreatment and subsequent calcium oxide catalytic co-pyrolysis. Biomass Conversion and Biorefinery, 0, , .	2.9	0
63	A comparative study on pyrolysis behaviors, product distribution, and kinetics of waste cotton stalk under different organic acidic solutions pretreatment. Biomass Conversion and Biorefinery, 0, , .	2.9	0