Ingrid E Scheffer Mbbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3502027/publications.pdf

Version: 2024-02-01

560 papers 65,313 citations

906 116 h-index 233 g-index

586 all docs

586 docs citations

586 times ranked 38672 citing authors

#	Article	IF	CITATIONS
1	ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia, 2014, 55, 475-482.	5.1	3,770
2	Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia, 2010, 51, 676-685.	5.1	3,612
3	<scp>ILAE</scp> classification of the epilepsies: Position paper of the <scp>ILAE</scp> Commission for Classification and Terminology. Epilepsia, 2017, 58, 512-521.	5.1	3,464
4	Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58, 522-530.	5.1	2,191
5	A definition and classification of status epilepticus – Report of the <scp>ILAE</scp> Task Force on Classification of Status Epilepticus. Epilepsia, 2015, 56, 1515-1523.	5.1	1,630
6	De novo mutations in epileptic encephalopathies. Nature, 2013, 501, 217-221.	27.8	1,351
7	Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. New England Journal of Medicine, 2017, 376, 2011-2020.	27.0	1,148
8	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
9	A missense mutation in the neuronal nicotinic acetylcholine receptor $\hat{l}\pm 4$ subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genetics, 1995, 11, 201-203.	21.4	1,074
10	doublecortin, a Brain-Specific Gene Mutated in Human X-Linked Lissencephaly and Double Cortex Syndrome, Encodes a Putative Signaling Protein. Cell, 1998, 92, 63-72.	28.9	1,007
11	Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B. Nature Genetics, 1998, 19, 366-370.	21.4	965
12	Mutations in filamin 1 Prevent Migration of Cerebral Cortical Neurons in Human Periventricular Heterotopia. Neuron, 1998, 21, 1315-1325.	8.1	811
13	Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nature Genetics, 2001, 28, 49-52.	21.4	721
14	Instruction manual for the <scp>ILAE</scp> 2017 operational classification of seizure types. Epilepsia, 2017, 58, 531-542.	5.1	699
15	Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nature Genetics, 2013, 45, 825-830.	21.4	589
16	Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics, 2014, 46, 1063-1071.	21.4	583
17	Epilepsy. Nature Reviews Disease Primers, 2018, 4, 18024.	30.5	541
18	Autosomal dominant nocturnal frontal lobe epilepsy. Brain, 1995, 118, 61-73.	7.6	523

#	Article	IF	CITATIONS
19	The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain, 2007, 130, 843-852.	7. 6	501
20	The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurology, The, 2016, 15, 304-316.	10.2	474
21	Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature Genetics, 2017, 49, 515-526.	21.4	443
22	<i>KCNQ2</i> encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy. Annals of Neurology, 2012, 71, 15-25.	5. 3	427
23	Truncation of the GABAA-Receptor \hat{I}^3 2 Subunit in a Family with Generalized Epilepsy with Febrile Seizures Plus. American Journal of Human Genetics, 2002, 70, 530-536.	6.2	425
24	Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open, 2018, 3, 175-192.	2.4	412
25	X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nature Genetics, 2008, 40, 776-781.	21.4	397
26	Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nature Genetics, 2002, 30, 441-445.	21.4	396
27	De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies. American Journal of Human Genetics, 2014, 95, 360-370.	6.2	388
28	De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nature Genetics, 2012, 44, 1030-1034.	21.4	345
29	Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q13.2. Nature Genetics, 1995, 10, 117-118.	21.4	337
30	High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. American Journal of Human Genetics, 2017, 101, 664-685.	6.2	337
31	Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nature Genetics, 2012, 44, 1188-1190.	21.4	333
32	Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet, The, 2002, 360, 851-852.	13.7	332
33	Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nature Communications, 2018, 9, 5269.	12.8	331
34	<i>SCN1A</i> mutations and epilepsy. Human Mutation, 2005, 25, 535-542.	2.5	327
35	GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nature Genetics, 2013, 45, 1073-1076.	21.4	326
36	Somatic Mutations in Cerebral Cortical Malformations. New England Journal of Medicine, 2014, 371, 733-743.	27.0	326

#	Article	IF	CITATIONS
37	Neuronal Sodium-Channel $\hat{l}\pm 1$ -Subunit Mutations in Generalized Epilepsy with Febrile Seizures Plus. American Journal of Human Genetics, 2001, 68, 859-865.	6.2	316
38	Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nature Genetics, 2013, 45, 546-551.	21.4	301
39	CHRNB2 Is the Second Acetylcholine Receptor Subunit Associated with Autosomal Dominant Nocturnal Frontal Lobe Epilepsy*. American Journal of Human Genetics, 2001, 68, 225-231.	6.2	300
40	GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Human Molecular Genetics, 2004, 13, 1315-1319.	2.9	299
41	De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy: a retrospective study. Lancet Neurology, The, 2006, 5, 488-492.	10.2	295
42	The genetics of Dravet syndrome. Epilepsia, 2011, 52, 24-29.	5.1	287
43	Generalized epilepsy with febrile seizures plus: A common childhood-onset genetic epilepsy syndrome. Annals of Neurology, 1999, 45, 75-81.	5. 3	271
44	Earlyâ€onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Annals of Neurology, 2009, 66, 415-419.	5. 3	266
45	Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2014, 13, 893-903.	10.2	264
46	International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia, 2022, 63, 1398-1442.	5.1	263
47	Benign familial neonatal-infantile seizures: Characterization of a new sodium channelopathy. Annals of Neurology, 2004, 55, 550-557.	5.3	250
48	Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurology, The, 2008, 7, 231-245.	10.2	249
49	<i>KCNT1</i> gain of function in 2 epilepsy phenotypes is reversed by quinidine. Annals of Neurology, 2014, 75, 581-590.	5.3	249
50	SRPX2 mutations in disorders of language cortex and cognition. Human Molecular Genetics, 2006, 15, 1195-1207.	2.9	248
51	New concepts in classification of the epilepsies: Entering the 21st century. Epilepsia, 2011, 52, 1058-1062.	5.1	248
52	Title is missing!. Nature Genetics, 2001, 28, 49-52.	21.4	247
53	De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies. American Journal of Human Genetics, 2016, 99, 287-298.	6.2	247
54	The phenotypic spectrum of <i>SCN8A</i> encephalopathy. Neurology, 2015, 84, 480-489.	1.1	246

#	Article	IF	Citations
55	A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nature Genetics, 2015, 47, 39-46.	21.4	245
56	Definition and diagnostic criteria of sleep-related hypermotor epilepsy. Neurology, 2016, 86, 1834-1842.	1.1	245
57	Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology. Brain, 2011, 134, 2982-3010.	7.6	237
58	Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. American Journal of Human Genetics, 2019, 105, 267-282.	6.2	237
59	ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia, 2022, 63, 1349-1397.	5.1	237
60	Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain, 2006, 130, 100-109.	7.6	234
61	PRRT2 Mutations Cause Benign Familial Infantile Epilepsy and Infantile Convulsions with Choreoathetosis Syndrome. American Journal of Human Genetics, 2012, 90, 152-160.	6.2	234
62	The new definition and classification of seizures and epilepsy. Epilepsy Research, 2018, 139, 73-79.	1.6	234
63	Phenotypic Characterization of an α ₄ Neuronal Nicotinic Acetylcholine Receptor Subunit Knock-Out Mouse. Journal of Neuroscience, 2000, 20, 6431-6441.	3.6	231
64	<i>GABRA1</i> and <i>STXBP1</i> : Novel genetic causes of Dravet syndrome. Neurology, 2014, 82, 1245-1253.	1.1	229
65	Early and effective treatment of <i><scp>KCNQ</scp>2</i> encephalopathy. Epilepsia, 2015, 56, 685-691.	5.1	229
66	Dominantâ€negative effects of <i>KCNQ2</i> mutations are associated with epileptic encephalopathy. Annals of Neurology, 2014, 75, 382-394.	5.3	225
67	Distinguishing Sleep Disorders From Seizures. Archives of Neurology, 2006, 63, 705.	4.5	223
68	Rare copy number variants are an important cause of epileptic encephalopathies. Annals of Neurology, 2011, 70, 974-985.	5. 3	222
69	Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Human Molecular Genetics, 2014, 23, 3200-3211.	2.9	222
70	Mortality in Dravet syndrome. Epilepsy Research, 2016, 128, 43-47.	1.6	218
71	Autosomal Dominant Nocturnal Frontal-Lobe Epilepsy: Genetic Heterogeneity and Evidence for a Second Locus at 15q24. American Journal of Human Genetics, 1998, 63, 1108-1116.	6.2	216
72	Exomeâ€based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Annals of Neurology, 2016, 79, 522-534.	5.3	216

#	Article	IF	Citations
7 3	Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain, 2010, 133, 1415-1427.	7.6	215
74	Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. Pharmacological Reviews, 2018, 70, 142-173.	16.0	215
75	Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Human Molecular Genetics, 2009, 18, 3626-3631.	2.9	211
76	<i>SCN2A</i> encephalopathy. Neurology, 2015, 85, 958-966.	1.1	211
77	Extending the <i>KCNQ2</i> encephalopathy spectrum. Neurology, 2013, 81, 1697-1703.	1.1	198
78	Mutations in mammalian target of rapamycin regulator <i>DEPDC5</i> cause focal epilepsy with brain malformations. Annals of Neurology, 2014, 75, 782-787.	5.3	193
79	Human epilepsies: interaction of genetic and acquired factors. Trends in Neurosciences, 2006, 29, 391-397.	8.6	190
80	Mutations in the mammalian target of rapamycin pathway regulators <i>NPRL2</i> and <i>NPRL3</i> cause focal epilepsy. Annals of Neurology, 2016, 79, 120-131.	5.3	190
81	Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurology, The, 2017, 16, 135-143.	10.2	190
82	<i>GRIN2B</i> encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. Journal of Medical Genetics, 2017, 54, 460-470.	3.2	190
83	Extended spectrum of idiopathic generalized epilepsies associated with <i>CACNA1H</i> functional variants. Annals of Neurology, 2007, 62, 560-568.	5.3	186
84	Quinidine in the treatment of <scp>KCNT</scp> 1â€positive epilepsies. Annals of Neurology, 2015, 78, 995-999.	5.3	184
85	Characterization of mutations in the genedoublecortin in patients with double cortex syndrome. Annals of Neurology, 1999, 45, 146-153.	5.3	175
86	Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case-control study. Lancet Neurology, The, 2007, 6, 970-980.	10.2	175
87	Genetic testing in the epilepsies—Report of the ILAE Genetics Commission. Epilepsia, 2010, 51, 655-670.	5.1	175
88	Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures. American Journal of Human Genetics, 2015, 96, 808-815.	6.2	173
89	Epilepsy and mental retardation limited to females: an under-recognized disorder. Brain, 2008, 131, 918-927.	7.6	172
90	Dose-Ranging Effect of Adjunctive Oral Cannabidiol vs Placebo on Convulsive Seizure Frequency in Dravet Syndrome. JAMA Neurology, 2020, 77, 613.	9.0	171

#	Article	IF	Citations
91	Infantile spasms, dystonia, and other X-linked phenotypes caused by mutations in Aristaless related homeobox gene, ARX. Brain and Development, 2002, 24, 266-268.	1.1	170
92	Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain, 2013, 136, 3140-3150.	7.6	168
93	A variant of <scp>KCC</scp> 2 from patients with febrile seizures impairs neuronal Cl ^{â^'} extrusion and dendritic spine formation. EMBO Reports, 2014, 15, 723-729.	4.5	163
94	Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures. Nature Communications, 2015, 6, 8038.	12.8	160
95	A roadmap for precision medicine in the epilepsies. Lancet Neurology, The, 2015, 14, 1219-1228.	10.2	160
96	Randomized, phase III study results of clobazam in Lennox-Gastaut syndrome. Neurology, 2011, 77, 1473-1481.	1.1	159
97	Autosomal dominant rolandic epilepsy and speech dyspraxia: A new syndrome with anticipation. Annals of Neurology, 1995, 38, 633-642.	5.3	156
98	Channelopathies as a genetic cause of epilepsy. Current Opinion in Neurology, 2003, 16, 171-176.	3.6	153
99	Severe myoclonic epilepsy of infancy (Dravet syndrome): Recognition and diagnosis in adults. Neurology, 2006, 67, 2224-2226.	1.1	153
100	Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus?. Brain and Development, 2009, 31, 394-400.	1.1	152
101	<i>SCN1A</i> duplications and deletions detected in Dravet syndrome: Implications for molecular diagnosis. Epilepsia, 2009, 50, 1670-1678.	5.1	152
102	AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nature Communications, 2019, 10, 3094.	12.8	150
103	Electroclinical features of absence seizures in childhood absence epilepsy. Neurology, 2006, 67, 413-418.	1.1	149
104	Childhood absence epilepsy and febrile seizures: a family with a GABAA receptor mutation. Brain, 2003, 126, 230-240.	7.6	148
105	Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology, 2010, 75, 432-440.	1.1	148
106	ILAE definition of the Idiopathic Generalized Epilepsy Syndromes: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia, 2022, 63, 1475-1499.	5.1	148
107	Migrating partial seizures of infancy: expansion of the electroclinical, radiological and pathological disease spectrum. Brain, 2013, 136, 1578-1591.	7.6	144
108	Occipital epilepsies: identification of specific and newly recognized syndromes. Brain, 2003, 126, 753-769.	7.6	142

#	Article	IF	CITATIONS
109	Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Molecular Psychiatry, 2016, 21, 126-132.	7.9	142
110	Glut1 Deficiency Syndrome (Glut1DS): State of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open, 2020, 5, 354-365.	2.4	142
111	Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology, 2013, 81, 1507-1514.	1.1	140
112	The management of epilepsy in children and adults. Medical Journal of Australia, 2018, 208, 226-233.	1.7	136
113	Analyzing the Etiology of Benign Rolandic Epilepsy: A Multicenter Twin Collaboration. Epilepsia, 2006, 47, 550-555.	5.1	135
114	Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Human Molecular Genetics, 2012, 21, 5359-5372.	2.9	134
115	The genetics of human epilepsy. Trends in Pharmacological Sciences, 2003, 24, 428-433.	8.7	131
116	<i>SYNGAP1</i> encephalopathy. Neurology, 2019, 92, e96-e107.	1.1	131
117	The core network in absence epilepsy. Neurology, 2010, 75, 904-911.	1.1	129
118	Genetic Architecture of Idiopathic Generalized Epilepsy: Clinical Genetic Analysis of 55 Multiplex Families. Epilepsia, 2004, 45, 467-478.	5.1	128
119	Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Annals of Neurology, 2012, 72, 807-815.	5.3	123
120	Glucose Transporter 1 Deficiency as a Treatable Cause of Myoclonic Astatic Epilepsy. Archives of Neurology, 2011, 68, 1152.	4.5	121
121	Independent Occurrence of the CHRNA4 Ser248Phe Mutation in a Norwegian Family with Nocturnal Frontal Lobe Epilepsy. Epilepsia, 2000, 41, 529-535.	5.1	119
122	Effects of vaccination on onset and outcome of Dravet syndrome: a retrospective study. Lancet Neurology, The, 2010, 9, 592-598.	10.2	119
123	Febrile seizures. BMJ: British Medical Journal, 2007, 334, 307-311.	2.3	118
124	Clinical profile of patients with ATP1A3 mutations in Alternating Hemiplegia of Childhood—a study of 155 patients. Orphanet Journal of Rare Diseases, 2015, 10, 123.	2.7	117
125	Mutations in <i><scp>KCNT</scp>1</i> cause a spectrum of focal epilepsies. Epilepsia, 2015, 56, e114-20.	5.1	117
126	Keeping people with epilepsy safe during the COVID-19 pandemic. Neurology, 2020, 94, 1032-1037.	1.1	116

#	Article	IF	Citations
127	The phenotype of <i>SCN8A</i> developmental and epileptic encephalopathy. Neurology, 2018, 91, e1112-e1124.	1.1	114
128	<i>CHD2</i> variants are a risk factor for photosensitivity in epilepsy. Brain, 2015, 138, 1198-1208.	7.6	112
129	Genetic epilepsy with febrile seizures plus. Neurology, 2017, 89, 1210-1219.	1.1	112
130	Familial partial epilepsy with variable foci: A new partial epilepsy syndrome with suggestion of linkage to chromosome 2. Annals of Neurology, 1998, 44, 890-899.	5.3	111
131	Recent advances in the molecular genetics of epilepsy. Journal of Medical Genetics, 2013, 50, 271-279.	3.2	111
132	Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3. Nature Communications, 2019, 10, 4919.	12.8	111
133	Periventricular heterotopia, mental retardation, and epilepsy associated with 5q14.3-q15 deletion. Neurology, 2009, 72, 784-792.	1.1	110
134	Mirror neuron system involvement in empathy: A critical look at the evidence. Social Neuroscience, 2011, 6, 327-335.	1.3	110
135	Precision therapy for epilepsy due to <i>KCNT1</i> mutations. Neurology, 2018, 90, e67-e72.	1.1	108
136	A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 2019, 24, 1065-1078.	7.9	106
137	Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females. Brain, 2002, 125, 2507-2522.	7.6	105
138	Heart rate variability in epilepsy: A potential biomarker of <scp>sudden unexpected death in epilepsy</scp> risk. Epilepsia, 2018, 59, 1372-1380.	5.1	105
139	Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nature Communications, 2020, 11, 4932.	12.8	105
140	Neuropsychological and functional MRI studies provide converging evidence of anterior language dysfunction in BECTS. Epilepsia, 2009, 50, 2276-2284.	5.1	104
141	Homozygous <i>PLCB1</i> deletion associated with malignant migrating partial seizures in infancy. Epilepsia, 2012, 53, e146-50.	5.1	104
142	Parental Mosaicism in "De Novo―Epileptic Encephalopathies. New England Journal of Medicine, 2018, 378, 1646-1648.	27.0	104
143	SCN1Aâ€related phenotypes: Epilepsy and beyond. Epilepsia, 2019, 60, S17-S24.	5.1	103
144	Genetic variation of CACNA1H in idiopathic generalized epilepsy. Annals of Neurology, 2004, 55, 595-596.	5.3	102

#	Article	IF	CITATIONS
145	SCN2A Mutations and Benign Familial Neonatal-Infantile Seizures: The Phenotypic Spectrum. Epilepsia, 2007, 48, 1138-1142.	5.1	102
146	<i>SLC25A22</i> is a novel gene for migrating partial seizures in infancy. Annals of Neurology, 2013, 74, 873-882.	5. 3	102
147	Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. American Journal of Human Genetics, 2016, 98, 1001-1010.	6.2	102
148	Channelopathies in idiopathic epilepsy. Neurotherapeutics, 2007, 4, 295-304.	4.4	101
149	<i>SCN8A</i> encephalopathy: Research progress and prospects. Epilepsia, 2016, 57, 1027-1035.	5.1	101
150	Timing of De Novo Mutagenesis â€" A Twin Study of Sodium-Channel Mutations. New England Journal of Medicine, 2010, 363, 1335-1340.	27.0	100
151	Longâ€ŧerm followâ€up of febrile infection–related epilepsy syndrome. Epilepsia, 2012, 53, 101-110.	5.1	100
152	Abnormal Cell Sorting Underlies the Unique X-Linked Inheritance of PCDH19 Epilepsy. Neuron, 2018, 97, 59-66.e5.	8.1	100
153	Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nature Communications, 2019, 10, 4920.	12.8	99
154	Chromosomal Abnormalities and Epilepsy: A Review for Clinicians and Gene Hunters. Epilepsia, 2002, 43, 127-140.	5.1	98
155	Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia, 2012, 53, e204-7.	5.1	97
156	<i>TBC1D24</i> genotype–phenotype correlation. Neurology, 2016, 87, 77-85.	1.1	97
157	Not all <i>SCN1A</i> epileptic encephalopathies are Dravet syndrome. Neurology, 2017, 89, 1035-1042.	1.1	97
158	Deciphering the concepts behind "Epileptic encephalopathy―and "Developmental and epileptic encephalopathy― European Journal of Paediatric Neurology, 2020, 24, 11-14.	1.6	97
159	A new molecular mechanism for severe myoclonic epilepsy of infancy: Exonic deletions in SCN1A. Neurology, 2006, 67, 1094-1095.	1.1	96
160	Augmented currents of an <i>HCN2</i> variant in patients with febrile seizure syndromes. Annals of Neurology, 2010, 67, 542-546.	5.3	96
161	The Genetic Landscape of Epilepsy of Infancy with Migrating Focal Seizures. Annals of Neurology, 2019, 86, 821-831.	5.3	96
162	Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy. Brain, 2010, 133, 2964-2970.	7.6	95

#	Article	IF	Citations
163	Progressive Gait Deterioration in Adolescents With Dravet Syndrome. Archives of Neurology, 2012, 69, 873-8.	4.5	95
164	Familial cortical dysplasia type <scp>IIA</scp> caused by a germline mutation in <i><scp>DEPDC</scp>5</i> . Annals of Clinical and Translational Neurology, 2015, 2, 575-580.	3.7	95
165	Genetic and neuroradiological heterogeneity of double cortex syndrome. Annals of Neurology, 2000, 47, 265-269.	5.3	94
166	Thalamic Atrophy in Childhood Absence Epilepsy. Epilepsia, 2006, 47, 399-405.	5.1	94
167	Familial neonatal seizures in 36 families: Clinical and genetic features correlate with outcome. Epilepsia, 2015, 56, 1071-1080.	5.1	94
168	Mutations of protocadherin 19 in female epilepsy (PCDH19-FE) lead to allopregnanolone deficiency. Human Molecular Genetics, 2015, 24, 5250-5259.	2.9	93
169	Classification of the epilepsies: New concepts for discussion and debateâ€"Special report of the ILAE Classification Task Force of the Commission for Classification and Terminology. Epilepsia Open, 2016, 1, 37-44.	2.4	93
170	Real-world utility of whole exome sequencing with targeted gene analysis for focal epilepsy. Epilepsy Research, 2017, 131, 1-8.	1.6	93
171	Susceptibility genes for complex epilepsy. Human Molecular Genetics, 2005, 14, R243-R249.	2.9	92
172	Genetics of the Epilepsies. Epilepsia, 2001, 42, 16-23.	5.1	91
173	Autoantibodies and epilepsy. Epilepsia, 2011, 52, 18-22.	5.1	90
174	Mapping of a Gene Determining Familial Partial Epilepsy with Variable Foci to Chromosome 22q11-q12. American Journal of Human Genetics, 1999, 65, 1698-1710.	6.2	89
175	Clinical and molecular characterization of <i>KCNT1</i> -related severe early-onset epilepsy. Neurology, 2018, 90, e55-e66.	1.1	89
176	X-linked myoclonic epilepsy with spasticity and intellectual disability. Neurology, 2002, 59, 348-356.	1.1	88
177	<i>DNM1</i> encephalopathy. Neurology, 2017, 89, 385-394.	1.1	87
178	De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias. American Journal of Human Genetics, 2018, 103, 666-678.	6.2	87
179	A systematic review and meta-analysis of 271 PCDH19-variant individuals identifies psychiatric comorbidities, and association of seizure onset and disease severity. Molecular Psychiatry, 2019, 24, 241-251.	7.9	86
180	Periventricular heterotopia in 6q terminal deletion syndrome: role of the C6orf70 gene. Brain, 2013, 136, 3378-3394.	7.6	85

#	Article	IF	CITATIONS
181	Methodology for classification and definition of epilepsy syndromes with list of syndromes: Report of the ILAE Task Force on Nosology and Definitions. Epilepsia, 2022, 63, 1333-1348.	5.1	84
182	Focal epileptiform spikes do not show a canonical BOLD response in patients with benign rolandic epilepsy (BECTS). NeuroImage, 2010, 51, 252-260.	4.2	82
183	Channelopathies as a genetic cause of epilepsy. Current Opinion in Neurology, 2003, 16, 171-176.	3.6	82
184	EEG features of absence seizures in idiopathic generalized epilepsy: Impact of syndrome, age, and state. Epilepsia, 2009, 50, 1572-1578.	5.1	81
185	International League Against Epilepsy classification and definition of epilepsy syndromes with onset at a variable age: position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia, 2022, 63, 1443-1474.	5.1	81
186	Neonatal nonepileptic myoclonus is a prominent clinical feature of <i><i><scp>KCNQ</scp>2</i>gainâ€ofâ€function variants R201C and R201H. Epilepsia, 2017, 58, 436-445.</i>	5.1	80
187	The ventrolateral medulla and medullary raphe in sudden unexpected death in epilepsy. Brain, 2018, 141, 1719-1733.	7.6	80
188	Epi4K: Gene discovery in 4,000 genomes. Epilepsia, 2012, 53, 1457-1467.	5.1	79
189	<i>CHD2</i> myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology, 2015, 84, 951-958.	1.1	79
190	Efficacy of the ketogenic diet: Which epilepsies respond?. Epilepsia, 2012, 53, e55-9.	5.1	77
191	A populationâ€based costâ€effectiveness study of early genetic testing in severe epilepsies of infancy. Epilepsia, 2018, 59, 1177-1187.	5.1	77
192	A Multicenter Study of BRD2 as a Risk Factor for Juvenile Myoclonic Epilepsy. Epilepsia, 2007, 48, 706-712.	5.1	76
193	Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies. American Journal of Human Genetics, 2018, 103, 1022-1029.	6.2	76
194	<i>PRRT2</i> phenotypic spectrum includes sporadic and fever-related infantile seizures. Neurology, 2012, 79, 2104-2108.	1.1	75
195	Small intragenic deletion in <i>FOXP2</i> associated with childhood apraxia of speech and dysarthria. American Journal of Medical Genetics, Part A, 2013, 161, 2321-2326.	1.2	75
196	Epilepsy and mental retardation limited to females with PCDH19 mutations can present de novo or in single generation families. Journal of Medical Genetics, 2010, 47, 211-216.	3.2	74
197	Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance. Brain, 2010, 133, 3221-3231.	7.6	74
198	Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy. EBioMedicine, 2015, 2, 1063-1070.	6.1	74

#	Article	IF	Citations
199	Autism and developmental disability caused by <i>KCNQ3</i> gainâ€ofâ€function variants. Annals of Neurology, 2019, 86, 181-192.	5.3	73
200	Juvenile myoclonic epilepsy and idiopathic photosensitive occipital lobe epilepsy: is there overlap?. Brain, 2004, 127, 1878-1886.	7.6	72
201	Is the ketogenic diet effective in specific epilepsy syndromes?. Epilepsy Research, 2012, 100, 252-257.	1.6	72
202	Familial Partial Epilepsy with Variable Foci: Clinical Features and Linkage to Chromosome 22q12. Epilepsia, 2004, 45, 1054-1060.	5.1	71
203	Dominant <i>KCNA2</i> mutation causes episodic ataxia and pharmacoresponsive epilepsy. Neurology, 2016, 87, 1975-1984.	1.1	71
204	Dynamic action potential clamp predicts functional separation in mild familial and severe de novo forms of <i>SCN2A</i> epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5516-E5525.	7.1	69
205	A childhood epilepsy mutation reveals a role for developmentally regulated splicing of a sodium channel. Molecular and Cellular Neurosciences, 2007, 35, 292-301.	2.2	68
206	Severe childhood speech disorder. Neurology, 2020, 94, e2148-e2167.	1.1	68
207	Phenotypic Comparison of Two Scottish Families with Mutations in Different Genes Causing Autosomal Dominant Nocturnal Frontal Lobe Epilepsy. Epilepsia, 2003, 44, 613-617.	5.1	67
208	<i>SCN1A</i> testing for epilepsy: Application in clinical practice. Epilepsia, 2013, 54, 946-952.	5.1	67
209	Pitfalls in genetic testing: the story of missed <i>SCN1A</i> mutations. Molecular Genetics & amp; Genomic Medicine, 2016, 4, 457-464.	1.2	67
210	Seizures Are Regulated by Ubiquitin-specific Peptidase 9 X-linked (USP9X), a De-Ubiquitinase. PLoS Genetics, 2015, 11, e1005022.	3.5	66
211	Translational Research in Epilepsy Genetics. Archives of Neurology, 2009, 66, 21-6.	4.5	65
212	<i>GRIN2A</i> . Neurology, 2015, 84, 586-593.	1.1	65
213	A New Locus for Generalized Epilepsy with Febrile Seizures Plus Maps to Chromosome 2. American Journal of Human Genetics, 2000, 66, 698-701.	6.2	64
214	Neonatal Epilepsy Syndromes and Generalized Epilepsy with Febrile Seizures Plus (GEFS+). Epilepsia, 2005, 46, 41-47.	5.1	63
215	Benign occipital epilepsies of childhood: clinical features and genetics. Brain, 2008, 131, 2287-2294.	7.6	63
216	The clinical utility of an <i>SCN1A</i> genetic diagnosis in infantileâ€onset epilepsy. Developmental Medicine and Child Neurology, 2013, 55, 154-161.	2.1	63

#	Article	IF	Citations
217	Epileptic spasms are a feature of <i>DEPDC5</i> mTORopathy. Neurology: Genetics, 2015, 1, e17.	1.9	63
218	The 2017 ILAE classification of seizure types and the epilepsies: what do people with epilepsy and their caregivers need to know?. Epileptic Disorders, 2018, 20, 77-87.	1.3	63
219	Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurology, The, 2022, 21, 417-427.	10.2	63
220	Role of the sodium channel <i><scp>SCN</scp>9A</i> in genetic epilepsy with febrile seizures plus and Dravet syndrome. Epilepsia, 2013, 54, e122-6.	5.1	62
221	International consensus on diagnosis and management of Dravet syndrome. Epilepsia, 2022, 63, 1761-1777.	5.1	62
222	Neonatal seizures and long QT Syndrome: A cardiocerebral channelopathy?. Epilepsia, 2010, 51, 293-296.	5.1	61
223	Molecular analysis of ring chromosome 20 syndrome reveals two distinct groups of patients. Journal of Medical Genetics, 2011, 48, 1-9.	3.2	61
224	16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy. Human Molecular Genetics, 2014, 23, 6069-6080.	2.9	61
225	Genetics of epilepsy. Neurology, 2014, 83, 1042-1048.	1.1	61
226	Reduction of seizure frequency after epilepsy surgery in a patient with <scp><i>STXBP1</i></scp> encephalopathy and clinical description of six novel mutation carriers. Epilepsia, 2013, 54, e74-80.	5.1	59
227	Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy. Annals of Neurology, 2015, 78, 323-328.	5.3	59
228	Mutations of the Sonic Hedgehog Pathway Underlie Hypothalamic Hamartoma with Gelastic Epilepsy. American Journal of Human Genetics, 2016, 99, 423-429.	6.2	59
229	Human Nocturnal Frontal Lobe Epilepsy: Pharmocogenomic Profiles of Pathogenic Nicotinic Acetylcholine Receptor \hat{I}^2 -Subunit Mutations outside the Ion Channel Pore. Molecular Pharmacology, 2008, 74, 379-391.	2.3	58
230	Clinical and molecular genetics of myoclonic–astatic epilepsy and severe myoclonic epilepsy in infancy (Dravet syndrome). Brain and Development, 2001, 23, 732-735.	1.1	57
231	Etiological heterogeneity of familial periventricular heterotopia and hydrocephalus. Brain and Development, 2004, 26, 326-334.	1.1	56
232	New Genes for Focal Epilepsies with Speech and Language Disorders. Current Neurology and Neuroscience Reports, 2015, 15, 35.	4.2	56
233	4.45ÂMb microduplication in chromosome band 14q12 including FOXG1 in a girl with refractory epilepsy and intellectual impairment. European Journal of Medical Genetics, 2009, 52, 440-442.	1.3	55
234	Diagnosis and long-term course of Dravet syndrome. European Journal of Paediatric Neurology, 2012, 16, S5-S8.	1.6	55

#	Article	IF	CITATIONS
235	Epilepsy with auditory features. Neurology: Genetics, 2015, 1, e5.	1.9	55
236	Secondâ€hit <i>DEPDC5</i> mutation is limited to dysmorphic neurons in cortical dysplasia type IIA. Annals of Clinical and Translational Neurology, 2019, 6, 1338-1344.	3.7	55
237	Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate–binding region. Epilepsia, 2019, 60, 406-418.	5.1	53
238	Febrile seizures: genetics and relationship to other epilepsy syndromes. Current Opinion in Neurology, 1998, 11, 129-134.	3.6	53
239	Is benign rolandic epilepsy genetically determined?. Annals of Neurology, 2004, 56, 129-132.	5. 3	52
240	Expanding the molecular basis and phenotypic spectrum of X-linked Joubert syndrome associated with OFD1 mutations. European Journal of Human Genetics, 2012, 20, 806-809.	2.8	52
241	The Epilepsy Genetics Initiative: Systematic reanalysis of diagnostic exomes increases yield. Epilepsia, 2019, 60, 797-806.	5.1	52
242	Etiology of hippocampal sclerosis: Evidence for a predisposing familial morphologic anomaly. Neurology, 2013, 81, 144-149.	1.1	51
243	The effect of the ketogenic diet on the developing skeleton. Epilepsy Research, 2017, 136, 62-66.	1.6	51
244	Stiripentol efficacy and safety in Dravet syndrome: a 12â€year observational study. Developmental Medicine and Child Neurology, 2018, 60, 574-578.	2.1	51
245	Defining Dravet syndrome: An essential preâ€requisite for precision medicine trials. Epilepsia, 2021, 62, 2205-2217.	5.1	50
246	Assessment of the role of FDG PET in the diagnosis and management of children with refractory epilepsy. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 1311-1316.	6.4	49
247	Severe autosomal dominant nocturnal frontal lobe epilepsy associated with psychiatric disorders and intellectual disability. Epilepsia, 2008, 49, 2125-2129.	5.1	49
248	Clinical genetic studies in benign childhood epilepsy with centrotemporal spikes. Epilepsia, 2012, 53, 319-324.	5.1	49
249	Reduced dendritic arborization and hyperexcitability of pyramidal neurons in a Scn1b-based model of Dravet syndrome. Brain, 2014, 137, 1701-1715.	7.6	49
250	Fenfluramine HCl (Fintepla [®]) provides longâ€term clinically meaningful reduction in seizure frequency: Analysis of an ongoing openâ€label extension study. Epilepsia, 2020, 61, 2396-2404.	5.1	49
251	A targeted resequencing gene panel for focal epilepsy. Neurology, 2016, 86, 1605-1612.	1.1	48
252	Early mortality in SCN8A -related epilepsies. Epilepsy Research, 2018, 143, 79-81.	1.6	48

#	Article	IF	CITATIONS
253	De Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable Neurodevelopmental Disorder. American Journal of Human Genetics, 2018, 103, 305-316.	6.2	48
254	Epilepsy Genetics Revolutionizes Clinical Practice. Neuropediatrics, 2014, 45, 070-074.	0.6	47
255	Lamotrigine can be beneficial in patients with Dravet syndrome. Developmental Medicine and Child Neurology, 2015, 57, 200-202.	2.1	47
256	Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects. Brain, 2020, 143, 2106-2118.	7.6	47
257	Exploration of the Genetic Architecture of Idiopathic Generalized Epilepsies. Epilepsia, 2006, 47, 1682-1690.	5.1	45
258	Whole-genome linkage scan for epilepsy-related photosensitivity: A mega-analysis. Epilepsy Research, 2010, 89, 286-294.	1.6	45
259	Sleep problems in Dravet syndrome: a modifiable comorbidity. Developmental Medicine and Child Neurology, 2018, 60, 192-198.	2.1	45
260	Somatic mutation: The hidden genetics of brain malformations and focal epilepsies. Epilepsy Research, 2019, 155, 106161.	1.6	45
261	Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia. American Journal of Human Genetics, 2019, 104, 948-956.	6.2	45
262	Addâ€on cannabidiol in patients with Dravet syndrome: Results of a longâ€term openâ€label extension trial. Epilepsia, 2021, 62, 2505-2517.	5.1	45
263	De novo SCN1A mutations in Dravet syndrome and related epileptic encephalopathies are largely of paternal origin. Journal of Medical Genetics, 2010, 47, 137-141.	3.2	44
264	Clinical genetic study of the epilepsyâ€aphasia spectrum. Epilepsia, 2013, 54, 280-287.	5.1	44
265	Severe infantile onset developmental and epileptic encephalopathy caused by mutations in autophagy gene <i><scp>WDR</scp>45</i> . Epilepsia, 2018, 59, e5-e13.	5.1	44
266	Genetic literacy series: genetic epilepsy with febrile seizures <i>plus</i> . Epileptic Disorders, 2018, 20, 232-238.	1.3	44
267	De Novo Mutations in PPP3CA Cause Severe Neurodevelopmental Disease with Seizures. American Journal of Human Genetics, 2017, 101, 516-524.	6.2	43
268	A Primate-Specific Isoform of PLEKHG6 Regulates Neurogenesis and Neuronal Migration. Cell Reports, 2018, 25, 2729-2741.e6.	6.4	43
269	Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.	12.8	43
270	Inhibition of Upf2-Dependent Nonsense-Mediated Decay Leads to Behavioral and Neurophysiological Abnormalities by Activating the Immune Response. Neuron, 2019, 104, 665-679.e8.	8.1	43

#	Article	IF	CITATIONS
271	Efficacy and Safety of Fenfluramine for the Treatment of Seizures Associated With Lennox-Gastaut Syndrome. JAMA Neurology, 2022, 79, 554.	9.0	43
272	The gain of function <i>SCN1A</i> disorder spectrum: novel epilepsy phenotypes and therapeutic implications. Brain, 2022, 145, 3816-3831.	7.6	43
273	Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain. Brain Communications, 2021, 3, fcaa235.	3.3	42
274	Mutation of the nuclear lamin gene <i>LMNB2</i> in progressive myoclonus epilepsy with early ataxia. Human Molecular Genetics, 2015, 24, 4483-4490.	2.9	41
275	Progressive myoclonus epilepsiesâ€"Residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. American Journal of Human Genetics, 2021, 108, 722-738.	6.2	41
276	Genetics of epilepsy syndromes in families with photosensitivity. Neurology, 2013, 80, 1322-1329.	1.1	40
277	The Epilepsy Phenome/Genome Project. Clinical Trials, 2013, 10, 568-586.	1.6	40
278	Efficacy and tolerability of adjunctive lacosamide in pediatric patients with focal seizures. Neurology, 2019, 93, e1212-e1226.	1.1	40
279	Ectopic posterior pituitary lobe and periventricular heterotopia: cerebral malformations with the same underlying mechanism?. American Journal of Neuroradiology, 2002, 23, 1475-81.	2.4	40
280	Epilepsies with single gene inheritance. Brain and Development, 1997, 19, 13-18.	1.1	39
281	Infantile Spasms of Unknown Cause: Predictors of Outcome and Genotype-Phenotype Correlation. Pediatric Neurology, 2018, 87, 48-56.	2.1	39
282	Perception of impact of Dravet syndrome on children and caregivers in multiple countries: looking beyond seizures. Developmental Medicine and Child Neurology, 2019, 61, 1229-1236.	2.1	39
283	SLC35A2â€CDG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals. Human Mutation, 2019, 40, 908-925.	2.5	39
284	Vaccination, seizures and â€~vaccine damage'. Current Opinion in Neurology, 2007, 20, 181-187.	3.6	38
285	Long-term safety and efficacy of clobazam for Lennox–Gastaut syndrome: Interim results of an open-label extension study. Epilepsy and Behavior, 2012, 25, 687-694.	1.7	37
286	Factors influencing clinical features of absence seizures. Epilepsia, 2008, 49, 2100-2107.	5.1	36
287	Familial Adult Myoclonic Epilepsy. Archives of Neurology, 2012, 69, 474.	4.5	36
288	Genetics of febrile seizure subtypes and syndromes: A twin study. Epilepsy Research, 2013, 105, 103-109.	1.6	36

#	Article	IF	CITATIONS
289	Hippocampal malrotation is an anatomic variant and has no clinical significance in <scp>MRI</scp> â€negative temporal lobe epilepsy. Epilepsia, 2016, 57, 1719-1728.	5.1	36
290	Loss of function of the retinoid-related nuclear receptor (RORB) gene and epilepsy. European Journal of Human Genetics, 2016, 24, 1761-1770.	2.8	36
291	The aetiologies of epilepsy. Epileptic Disorders, 2021, 23, 1-16.	1.3	35
292	<i>ATP1A2-</i> and <i>ATP1A3-</i> associated early profound epileptic encephalopathy and polymicrogyria. Brain, 2021, 144, 1435-1450.	7.6	35
293	Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals. American Journal of Human Genetics, 2021, 108, 965-982.	6.2	35
294	Cyclin-Dependent Kinase-Like 5 (<i>CDKL5</i>) Mutation Screening in Rett Syndrome and Related Disorders. Twin Research and Human Genetics, 2010, 13, 168-178.	0.6	34
295	Epilepsy in <i>KCNH1</i> â€related syndromes. Epileptic Disorders, 2016, 18, 123-136.	1.3	34
296	Genetic Testing in Epilepsy: What Should you be Doing?. Epilepsy Currents, 2011, 11, 107-111.	0.8	33
297	A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy. Human Molecular Genetics, 2014, 23, 247-258.	2.9	33
298	Loss of synaptic Zn2+ transporter function increases risk of febrile seizures. Scientific Reports, 2015, 5, 17816.	3.3	33
299	Expanding the genetic and phenotypic relevance of <i>KCNB1</i> variants in developmental and epileptic encephalopathies: 27 new patients and overview of the literature. Human Mutation, 2020, 41, 69-80.	2.5	33
300	Germline and Mosaic Variants in PRKACA and PRKACB Cause a Multiple Congenital Malformation Syndrome. American Journal of Human Genetics, 2020, 107, 977-988.	6.2	33
301	Genetics of human partial epilepsy. Current Opinion in Neurology, 1997, 10, 110-114.	3.6	32
302	Family studies of individuals with eyelid myoclonia with absences. Epilepsia, 2012, 53, 2141-2148.	5.1	32
303	Genomeâ€wide linkage metaâ€analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies. Epilepsia, 2012, 53, 308-318.	5.1	32
304	Bilateral Posterior Periventricular Nodular Heterotopia: A Recognizable Cortical Malformation with a Spectrum of Associated Brain Abnormalities. American Journal of Neuroradiology, 2013, 34, 432-438.	2.4	32
305	Peritrigonal and temporo-occipital heterotopia with corpus callosum and cerebellar dysgenesis. Neurology, 2012, 79, 1244-1251.	1.1	31
306	De novo <i><scp>SCN</scp>1A</i> pathogenic variants in the <scp>GEFS</scp> + spectrum: Not always a familial syndrome. Epilepsia, 2017, 58, e26-e30.	5.1	31

#	Article	IF	CITATIONS
307	<i>ADGRV1</i> is implicated in myoclonic epilepsy. Epilepsia, 2018, 59, 381-388.	5.1	31
308	The severe epilepsy syndromes of infancy: A populationâ€based study. Epilepsia, 2021, 62, 358-370.	5.1	31
309	Familial neonatal seizures with intellectual disability caused by a microduplication of chromosome 2q24.3. Epilepsia, 2010, 51, 1865-1869.	5.1	30
310	Faulty cardiac repolarization reserve in alternating hemiplegia of childhood broadens the phenotype. Brain, 2015, 138, 2859-2874.	7.6	30
311	Efficacy of cannabinoids in paediatric epilepsy. Developmental Medicine and Child Neurology, 2019, 61, 13-18.	2.1	30
312	Climate change and epilepsy: Insights from clinical and basic science studies. Epilepsy and Behavior, 2021, 116, 107791.	1.7	30
313	Glucose metabolism transporters and epilepsy: Only <scp>GLUT</scp> 1 has an established role. Epilepsia, 2014, 55, e18-21.	5.1	29
314	DEPDC5 as a potential therapeutic target for epilepsy. Expert Opinion on Therapeutic Targets, 2017, 21, 591-600.	3.4	29
315	Fatal Cerebral Edema With Status Epilepticus in Children With Dravet Syndrome: Report of 5 Cases. Pediatrics, 2017, 139, .	2.1	29
316	Somatic <i>GNAQ</i> mutation in the <i>forme fruste</i> of Sturge-Weber syndrome. Neurology: Genetics, 2018, 4, e236.	1.9	29
317	Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes. Brain, 2022, 145, 555-568.	7.6	29
318	Genetics of the epilepsies. Current Opinion in Pediatrics, 2000, 12, 536-542.	2.0	28
319	Reflex Seizures in Patients with Malformations of Cortical Development and Refractory Epilepsy. Epilepsia, 2005, 46, 1224-1234.	5.1	28
320	Gain-of-function <i>HCN2</i> variants in genetic epilepsy. Human Mutation, 2018, 39, 202-209.	2.5	28
321	Parental health spillover effects of paediatric rare genetic conditions. Quality of Life Research, 2020, 29, 2445-2454.	3.1	28
322	NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns. Genetics in Medicine, 2021, 23, 363-373.	2.4	28
323	Genetic dissection of the common epilepsies. Current Opinion in Neurology, 2006, 19, 157-163.	3.6	27
324	Autosomal Dominant Nocturnal Frontal Lobe Epilepsy. Epilepsia, 2000, 41, 1059-1060.	5.1	26

#	Article	IF	CITATIONS
325	Automatisms in Absence Seizures in Children With Idiopathic Generalized Epilepsy. Archives of Neurology, 2009, 66, 729-34.	4.5	26
326	Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy. Brain, 2021, 144, 2060-2073.	7.6	26
327	Genetics of the epilepsies. Current Opinion in Neurology, 1999, 12, 177-182.	3. 6	26
328	Harnessing Gene Expression Networks to Prioritize Candidate Epileptic Encephalopathy Genes. PLoS ONE, 2014, 9, e102079.	2.5	25
329	A case-control collapsing analysis identifies epilepsy genes implicated in trio sequencing studies focused on de novo mutations. PLoS Genetics, 2017, 13, e1007104.	3.5	25
330	Absence of mutations in the LGI1 receptor ADAM22 gene in autosomal dominant lateral temporal epilepsy. Epilepsy Research, 2007, 76, 41-48.	1.6	24
331	Gene expression analysis in absence epilepsy using a monozygotic twin design. Epilepsia, 2008, 49, 1546-1554.	5.1	24
332	Familial focal epilepsy with variable foci mapped to chromosome 22q12: Expansion of the phenotypic spectrum. Epilepsia, 2012, 53, e151-5.	5.1	24
333	Epilepsy classification. Current Opinion in Neurology, 2013, 26, 163-167.	3.6	24
334	Features of the broader autism phenotype in people with epilepsy support shared mechanisms between epilepsy and autism spectrum disorder. Neuroscience and Biobehavioral Reviews, 2017, 75, 203-233.	6.1	24
335	Predominant and novel de novo variants in 29 individuals with <scp><i>ALG13</i></scp> deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions. Journal of Inherited Metabolic Disease, 2020, 43, 1333-1348.	3.6	24
336	Damaging de novo missense variants in <i>EEF1A2</i> lead to a developmental and degenerative epilepticâ€dyskinetic encephalopathy. Human Mutation, 2020, 41, 1263-1279.	2.5	24
337	Severe speech impairment is a distinguishing feature of <i>FOXP1</i> â€related disorder. Developmental Medicine and Child Neurology, 2021, 63, 1417-1426.	2.1	24
338	Development and Validation of a Prediction Model for Early Diagnosis of <i>SCN1A</i> -Related Epilepsies. Neurology, 2022, 98, .	1.1	24
339	Is focal cortical dysplasia sporadic? Family evidence for genetic susceptibility. Epilepsia, 2014, 55, e22-6.	5.1	23
340	Periventricular Nodular Heterotopia: Detection of Abnormal Microanatomic Fiber Structures with Whole-Brain Diffusion MR Imaging Tractography. Radiology, 2016, 281, 896-906.	7.3	23
341	Early neuroimaging markers of FOXP2 intragenic deletion. Scientific Reports, 2016, 6, 35192.	3.3	23
342	Multiplex families with epilepsy. Neurology, 2016, 86, 713-722.	1.1	23

#	Article	IF	CITATIONS
343	Frequency of <i> <scp>CNKSR</scp>2</i> mutation in the Xâ€linked epilepsyâ€aphasia spectrum. Epilepsia, 2017, 58, e40-e43.	5.1	23
344	Genomeâ€wide association study: Exploring the genetic basis for responsiveness to ketogenic dietary therapies for drugâ€resistant epilepsy. Epilepsia, 2018, 59, 1557-1566.	5.1	23
345	Schizophrenia is a laterâ€onset feature of <i><scp>PCDH</scp>19</i> Girls Clustering Epilepsy. Epilepsia, 2019, 60, 429-440.	5.1	23
346	Familial adult myoclonic epilepsy type 1 SAMD12 TTTCA repeat expansion arose 17,000 years ago and is present in Sri Lankan and Indian families. European Journal of Human Genetics, 2020, 28, 973-978.	2.8	23
347	Natural History Study of STXBP1-Developmental and Epileptic Encephalopathy Into Adulthood. Neurology, 2022, 99, .	1.1	23
348	Severe infantile epilepsies: molecular genetics challenge clinical classification. Brain, 2003, 126, 513-514.	7.6	22
349	Does a <i>SCN1A</i> gene mutation confer earlier age of onset of febrile seizures in GEFS+?. Epilepsia, 2009, 50, 953-956.	5.1	22
350	Mutations in <i>TNK2</i> in severe autosomal recessive infantile onset epilepsy. Annals of Neurology, 2013, 74, 496-501.	5.3	22
351	Dysarthria and broader motor speech deficits in Dravet syndrome. Neurology, 2017, 88, 743-749.	1.1	22
352	A standardized patient-centered characterization of the phenotypic spectrum of PCDH19 girls clustering epilepsy. Translational Psychiatry, 2020, 10, 127.	4.8	22
353	Natural History Studies and Clinical Trial Readiness for Genetic Developmental and Epileptic Encephalopathies. Neurotherapeutics, 2021, 18, 1432-1444.	4.4	22
354	<i>PRIMA1</i> mutation: a new cause of nocturnal frontal lobe epilepsy. Annals of Clinical and Translational Neurology, 2015, 2, 821-830.	3.7	21
355	Cognitive, behavioral, and social functioning in children and adults with Dravet syndrome. Epilepsy and Behavior, 2020, 112, 107319.	1.7	21
356	Pathogenic Variants in CEP85L Cause Sporadic and Familial Posterior Predominant Lissencephaly. Neuron, 2020, 106, 237-245.e8.	8.1	21
357	Copy number variants-an unexpected risk factor for the idiopathic generalized epilepsies. Brain, 2010, 133, 7-8.	7.6	20
358	The Role of Seizure-Related <i>SEZ6</i> as a Susceptibility Gene in Febrile Seizures. Neurology Research International, 2011, 2011, 1-4.	1.3	20
359	GLUT1 deficiency. Neurology, 2012, 78, 524-525.	1.1	20
360	Autosomal dominant vasovagal syncope. Neurology, 2013, 80, 1485-1493.	1.1	20

#	Article	IF	Citations
361	Evaluation of nonâ€coding variation in <scp>GLUT</scp> 1 deficiency. Developmental Medicine and Child Neurology, 2016, 58, 1295-1302.	2.1	20
362	The epileptology of Koolenâ€de Vries syndrome: Electroâ€clinicoâ€radiologic findings in 31 patients. Epilepsia, 2017, 58, 1085-1094.	5.1	20
363	The epilepsy phenotypic spectrum associated with a recurrent <i>CUX2</i> variant. Annals of Neurology, 2018, 83, 926-934.	5.3	20
364	Focal epilepsy in <i>SCN1A</i> â€mutation carrying patients: is there a role for epilepsy surgery?. Developmental Medicine and Child Neurology, 2020, 62, 1331-1335.	2.1	20
365	Genetic analysis of <i>PHOX2B</i> in sudden unexpected death in epilepsy cases. Neurology, 2014, 83, 1018-1021.	1.1	19
366	In silico prioritization based on coexpression can aid epileptic encephalopathy gene discovery. Neurology: Genetics, 2016, 2, e51.	1.9	19
367	Familial mesial temporal lobe epilepsy and the borderland of déjà vu. Annals of Neurology, 2017, 82, 166-176.	5.3	19
368	De novo variants in the alternative exon 5 of SCN8A cause epileptic encephalopathy. Genetics in Medicine, 2018, 20, 275-281.	2.4	19
369	Cardiac phenotype in <i>ATP1A3</i> -related syndromes. Neurology, 2020, 95, e2866-e2879.	1.1	19
370	Neuronal ceroid lipofuscinosis type 2: an Australian case series. Journal of Paediatrics and Child Health, 2020, 56, 1210-1218.	0.8	19
371	Electroencephalographic abnormalities during sleep in children with developmental speechâ€language disorders: a case–control study. Developmental Medicine and Child Neurology, 2009, 51, 228-234.	2.1	18
372	In vivo loss of slow potassium channel activity in individuals with benign familial neonatal epilepsy in remission. Brain, 2012, 135, 3144-3152.	7.6	18
373	Deletions of $16p11.2$ and $19p13.2$ in a family with intellectual disability and generalized epilepsy. American Journal of Medical Genetics, Part A, 2013, 161, 1722-1725.	1.2	18
374	Randomized Controlled Trial of Melatonin for Sleep Disturbance in Dravet Syndrome: The DREAMS Study. Journal of Clinical Sleep Medicine, 2018, 14, 1697-1704.	2.6	18
375	<i><scp>BRAT</scp>1</i> encephalopathy: a recessive cause of epilepsy of infancy with migrating focal seizures. Developmental Medicine and Child Neurology, 2020, 62, 1096-1099.	2.1	18
376	Bi-allelic LoF NRROS Variants Impairing Active TGF- \hat{l}^21 Delivery Cause a Severe Infantile-Onset Neurodegenerative Condition with Intracranial Calcification. American Journal of Human Genetics, 2020, 106, 559-569.	6.2	18
377	Early seizures: causal events or predisposition to adult epilepsy?. Lancet Neurology, The, 2007, 6, 643-651.	10.2	17
378	Milder phenotypes of glucose transporter type 1 deficiency syndrome. Developmental Medicine and Child Neurology, 2011, 53, 664-668.	2.1	17

#	Article	IF	CITATIONS
379	A retrospective populationâ€based study on seizures related to childhood vaccination. Epilepsia, 2011, 52, 1506-1512.	5.1	17
380	<scp>L</scp> ennoxâ€ <scp>G</scp> astaut syndrome of unknown cause: Phenotypic characteristics of patients in the <scp>E</scp> pilepsy <scp>P</scp> henome/ <scp>G</scp> enome <scp>P</scp> roject. Epilepsia, 2013, 54, 1898-1904.	5.1	17
381	Head stereotypies in <i><scp>STXBP</scp>1</i> encephalopathy. Developmental Medicine and Child Neurology, 2013, 55, 769-772.	2.1	17
382	A mutation in <i>COL4A2</i> causes autosomal dominant porencephaly with cataracts. American Journal of Medical Genetics, Part A, 2016, 170, 1059-1063.	1.2	17
383	Recessive variants in ZNF142 cause a complex neurodevelopmental disorder with intellectual disability, speech impairment, seizures, and dystonia. Genetics in Medicine, 2019, 21, 2532-2542.	2.4	17
384	Developmental and epilepsy spectrum of <i>KCNB1</i> encephalopathy with longâ€term outcome. Epilepsia, 2020, 61, 2461-2473.	5.1	17
385	Guidelines on the diagnosis, clinical assessments, treatment and management for CLN2 disease patients. Orphanet Journal of Rare Diseases, 2021, 16, 185.	2.7	17
386	A Twin Study of Genetic Influences on Epilepsy Outcome. Twin Research and Human Genetics, 2003, 6, 140-146.	1.0	17
387	Electroclinical features of absence seizures in sleep. Epilepsy Research, 2011, 93, 216-220.	1.6	16
388	Atypical multifocal <scp>D</scp> ravet syndrome lacks generalized seizures and may show later cognitive decline. Developmental Medicine and Child Neurology, 2014, 56, 85-90.	2.1	16
389	Dorsal language stream anomalies in an inherited speech disorder. Brain, 2019, 142, 966-977.	7.6	16
390	Levetiracetam efficacy in PCDH19 Girls Clustering Epilepsy. European Journal of Paediatric Neurology, 2020, 24, 142-147.	1.6	16
391	Are Variants Causing Cardiac Arrhythmia Risk Factors in Sudden Unexpected Death in Epilepsy?. Frontiers in Neurology, 2020, 11, 925.	2.4	16
392	Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. American Journal of Human Genetics, 2022, 109, 601-617.	6.2	16
393	Is Variation in the GABA(B) Receptor 1 Gene Associated with Temporal Lobe Epilepsy?. Epilepsia, 2005, 46, 778-780.	5.1	15
394	Seizure semiology in autosomal dominant epilepsy with auditory features, due to novel LGI1 mutations. Epilepsy Research, 2013, 107, 311-317.	1.6	15
395	2017 International League Against Epilepsy classifications of seizures and epilepsy are steps in the right direction. Epilepsia, 2019, 60, 1040-1044.	5.1	15
396	<i>SCN1A</i> Variants in vaccineâ€related febrile seizures: A prospective study. Annals of Neurology, 2020, 87, 281-288.	5. 3	15

#	Article	IF	CITATIONS
397	PCDH19 Pathogenic Variants in Males: Expanding the Phenotypic Spectrum. Advances in Experimental Medicine and Biology, 2020, 1298, 177-187.	1.6	15
398	Safety and Tolerability of Transdermal Cannabidiol Gel in Children With Developmental and Epileptic Encephalopathies. JAMA Network Open, 2021, 4, e2123930.	5.9	15
399	Mosaicism of a missense <i>SCN1A</i> mutation and Dravet syndrome in a Roma/Gypsy family. Epileptic Disorders, 2010, 12, 117-124.	1.3	14
400	Detection of microchromosomal aberrations in refractory epilepsy: a pilot study. Epileptic Disorders, 2010, 12, 192-198.	1.3	14
401	Neuropsychological function in patients with a single gene mutation associated with autosomal dominant nocturnal frontal lobe epilepsy. Epilepsy and Behavior, 2010, 17, 531-535.	1.7	14
402	Myoclonic Absence Seizures in Dravet Syndrome. Pediatric Neurology, 2017, 70, 67-69.	2.1	14
403	Gonadal mosaicism of a novel IQSEC2 variant causing female limited intellectual disability and epilepsy. European Journal of Human Genetics, 2017, 25, 763-767.	2.8	14
404	EXOME REPORT: Novel mutation in ATP6V1B2 segregating with autosomal dominant epilepsy, intellectual disability and mild gingival and nail abnormalities. European Journal of Medical Genetics, 2020, 63, 103799.	1.3	14
405	Inherited <i>RORB</i> pathogenic variants: Overlap of photosensitive genetic generalized and occipital lobe epilepsy. Epilepsia, 2020, 61, e23-e29.	5.1	14
406	Evidence for a Dual-Pathway, 2-Hit Genetic Model for Focal Cortical Dysplasia and Epilepsy. Neurology: Genetics, 2022, 8, e652.	1.9	14
407	Vaccination Triggers, Rather than Causes, Seizures. Epilepsy Currents, 2015, 15, 335-337.	0.8	13
408	The epileptology of GNB5 encephalopathy. Epilepsia, 2019, 60, e121-e127.	5.1	13
409	Association of <i>SLC32A1</i> Missense Variants With Genetic Epilepsy With Febrile Seizures Plus. Neurology, 2021, 96, e2251-e2260.	1.1	13
410	COVIDâ€19 vaccine in patients with Dravet syndrome: Observations and realâ€world experiences. Epilepsia, 2022, 63, 1778-1786.	5.1	13
411	Functional correlates of clinical phenotype and severity in recurrent SCN2A variants. Communications Biology, 2022, 5, .	4.4	13
412	Locus for febrile seizures. Annals of Neurology, 2000, 47, 840-841.	5.3	12
413	Genetics of the Epilepsies. Epilepsia, 2001, 42, 16-23.	5.1	12
414	A duplication in 1q21.3 in a family with early onset and childhood absence epilepsy. Epilepsia, 2010, 51, 2453-2456.	5.1	12

#	Article	IF	CITATIONS
415	Epilepsy: A classification for all seasons?. Epilepsia, 2012, 53, 6-9.	5.1	12
416	Genetics of idiopathic epilepsies. Handbook of Clinical Neurology $\!\!\!/$ Edited By P J Vinken and G W Bruyn, 2013, 111, 567-578.	1.8	12
417	Mutations in <i><scp>PRRT</scp>2</i> are not a common cause of infantile epileptic encephalopathies. Epilepsia, 2013, 54, e86-9.	5.1	12
418	Childhood-onset generalized epilepsy in Bainbridge-Ropers syndrome. Epilepsy Research, 2018, 140, 166-170.	1.6	12
419	Diverse genetic causes of polymicrogyria with epilepsy. Epilepsia, 2021, 62, 973-983.	5.1	12
420	The role of common genetic variation in presumed monogenic epilepsies. EBioMedicine, 2022, 81, 104098.	6.1	12
421	How long should a routine EEG be?. Journal of Clinical Neuroscience, 1999, 6, 492-493.	1.5	11
422	What is at stake in a classification?. Epilepsia, 2011, 52, 1205-1208.	5.1	11
423	Does genotype determine phenotype?. Neurology, 2011, 76, 588-589.	1.1	11
424	Rare protein sequence variation in SV2A gene does not affect response to levetiracetam. Epilepsy Research, 2012, 101, 277-279.	1.6	11
425	Do mutations in SCN1B cause Dravet syndrome?. Epilepsy Research, 2013, 103, 97-100.	1.6	11
426	Beyond the single nucleotide variant in epilepsy genetics. Nature Reviews Neurology, 2014, 10, 490-491.	10.1	11
427	"lt's good to know― Experiences of gene identification and result disclosure in familial epilepsies. Epilepsy Research, 2015, 112, 64-71.	1.6	11
428	Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania. Epilepsia Open, 2019, 4, 504-510.	2.4	11
429	Defining the phenotype of <i>FHF1</i> developmental and epileptic encephalopathy. Epilepsia, 2020, 61, e71-e78.	5.1	11
430	Dravet syndrome: A quick transition guide for the adult neurologist. Epilepsy Research, 2021, 177, 106743.	1.6	11
431	Postictal Psychosis in Epilepsy: A Clinicogenetic Study. Annals of Neurology, 2021, 90, 464-476.	5.3	11
432	A pharmacogenomic assessment of psychiatric adverse drug reactions to levetiracetam. Epilepsia, 2022, 63, 1563-1570.	5.1	11

#	Article	IF	Citations
433	Exome sequencing for patients with developmental and epileptic encephalopathies in clinical practice. Developmental Medicine and Child Neurology, 2023, 65, 50-57.	2.1	11
434	Febrile Convulsions and Genetic Susceptibility: Role of the Neuronal Nicotinic Acetylcholine Receptor alpha4 Subunit. Epilepsia, 2004, 45, 561-561.	5.1	10
435	Is Photosensitive Epilepsy Less Common in Males Due to Variation in X Chromosome Photopigment Genes?. Epilepsia, 2007, 48, 1807-1809.	5.1	10
436	Benign Neonatal Sleep Myoclonus. Journal of Child Neurology, 2012, 27, 1260-1263.	1.4	10
437	Familial epilepsy with anterior polymicrogyria as a presentation of COL18A1 mutations. European Journal of Medical Genetics, 2017, 60, 437-443.	1.3	10
438	A case series of lacosamide as adjunctive therapy in refractory sleepâ€related hypermotor epilepsy (previously nocturnal frontal lobe epilepsy). Journal of Sleep Research, 2018, 27, e12669.	3.2	10
439	Cognitive processes predicting advanced theory of mind in the broader autism phenotype. Autism Research, 2020, 13, 921-934.	3.8	10
440	Genetic Contributions to Acquired Epilepsies. Epilepsy Currents, 2021, 21, 5-13.	0.8	10
441	Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annual Review of Pharmacology and Toxicology, 2022, 62, 641-662.	9.4	10
442	The phenotypic spectrum of Xâ€linked, infantile onset <i>ALG13</i> à€related developmental and epileptic encephalopathy. Epilepsia, 2021, 62, 325-334.	5.1	10
443	Defective lipid signalling caused by mutations in <i>PIK3C2B</i> li>underlies focal epilepsy. Brain, 2022, 145, 2313-2331.	7.6	10
444	GEFS ⁺ where focal seizures evolve from generalized spike wave: videoâ€EEG study of two children. Epileptic Disorders, 2007, 9, 307-314.	1.3	10
445	Common risk variants for epilepsy are enriched in families previously targeted for rare monogenic variant discovery. EBioMedicine, 2022, 81, 104079.	6.1	10
446	Investigation of the 15q13.3 CNV as a genetic modifier for familial epilepsies with variable phenotypes. Epilepsia, 2011, 52, e139-e142.	5.1	9
447	Febrile infection-related epilepsy syndrome is not caused by SCN1A mutations. Epilepsy Research, 2012, 100, 194-198.	1.6	9
448	Racial and ethnic differences in epilepsy classification among probands in the Epilepsy Phenome/Genome Project (EPGP). Epilepsy Research, 2013, 107, 306-310.	1.6	9
449	Clinical and genetic analysis of a family with two rare reflex epilepsies. Seizure: the Journal of the British Epilepsy Association, 2015, 29, 90-96.	2.0	9
450	Speech and language in bilateral perisylvian polymicrogyria: a systematic review. Developmental Medicine and Child Neurology, 2019, 61, 1145-1152.	2.1	9

#	Article	IF	CITATIONS
451	Splice variant in <i>ARX</i> leading to loss of Câ€terminal region in a boy with intellectual disability and infantile onset developmental and epileptic encephalopathy. American Journal of Medical Genetics, Part A, 2019, 179, 1483-1490.	1.2	9
452	Antiepileptic Drug Teratogenicity and De Novo Genetic Variation Load. Annals of Neurology, 2020, 87, 897-906.	5.3	9
453	Medullary tyrosine hydroxylase catecholaminergic neuronal populations in sudden unexpected death in epilepsy. Brain Pathology, 2021, 31, 133-143.	4.1	9
454	Contribution of rare genetic variants to drug response in absence epilepsy. Epilepsy Research, 2021, 170, 106537.	1.6	9
455	Lossâ€ofâ€function variants in K _v 11.1 cardiac channels as a biomarker for SUDEP. Annals of Clinical and Translational Neurology, 2021, 8, 1422-1432.	3.7	9
456	Using common genetic variants to find drugs for common epilepsies. Brain Communications, 2021, 3, fcab287.	3.3	9
457	A randomized, doubleâ€blind trial of triheptanoin for drugâ€resistant epilepsy in glucose transporter 1 deficiency syndrome. Epilepsia, 2022, 63, 1748-1760.	5.1	9
458	Classification and clinical features of absence epilepsies: How evidence leads to changing concepts. Epilepsia, 2008, 49, 2140-2141.	5.1	8
459	Association of a Nicotinic Receptor Mutation with Reduced Height and Blunted Physostigmine-Stimulated Growth Hormone Release. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 634-637.	3.6	8
460	Optimizing Electroencephalographic Studies for Epilepsy Diagnosis in Children With New-Onset Seizures. Archives of Neurology, 2010, 67, 1345-9.	4.5	8
461	Genetics of the epilepsies: Genetic twists in the channels and other tales. Epilepsia, 2010, 51, 33-36.	5.1	8
462	Transition to adult life in the monogenic epilepsies. Epilepsia, 2014, 55, 12-15.	5.1	8
463	Favourable response to ketogenic dietary therapies: undiagnosed glucose 1 transporter deficiency syndrome is only one factor. Developmental Medicine and Child Neurology, 2015, 57, 969-976.	2.1	8
464	The ketogenic diet is effective for refractory epilepsy associated with acquired structural epileptic encephalopathy. Developmental Medicine and Child Neurology, 2018, 60, 718-723.	2.1	8
465	Therapeutic use of medicinal cannabis in difficult to manage epilepsy. British Journal of Clinical Pharmacology, 2018, 84, 2488-2490.	2.4	8
466	<i>FBXO28</i> causes developmental and epileptic encephalopathy with profound intellectual disability. Epilepsia, 2021, 62, e13-e21.	5.1	8
467	Speech, Language, and Oromotor Skills in Patients With Polymicrogyria. Neurology, 2021, 96, e1898-e1912.	1.1	8
468	Phenotypic Spectrum of Seizure Disorders in MBD5-Associated Neurodevelopmental Disorder. Neurology: Genetics, 2021, 7, e579.	1.9	8

#	Article	IF	CITATIONS
469	Seizures in Sotos syndrome: Phenotyping in 49 patients. Epilepsia Open, 2021, 6, 425-430.	2.4	8
470	Sporadic hypothalamic hamartoma is a ciliopathy with somatic and bi-allelic contributions. Human Molecular Genetics, 2022, 31, 2307-2316.	2.9	8
471	Association of ultraâ€fare coding variants with genetic generalized epilepsy: A case–control whole exome sequencing study. Epilepsia, 2022, 63, 723-735.	5.1	8
472	Rare sudden unexpected death in epilepsy $\langle i \rangle$ SCN5A $\langle i \rangle$ variants cause changes in channel function implicating cardiac arrhythmia as a cause of death. Epilepsia, 2022, 63, .	5.1	8
473	Extreme virilization in patients with congenital adrenal hyperplasia fails to induce descent of the ovary. Pediatric Surgery International, 1988, 3-3, 165.	1.4	7
474	Does variation in NIPA2 contribute to genetic generalized epilepsy?. Human Genetics, 2014, 133, 673-674.	3.8	7
475	Myoclonic occipital photosensitive epilepsy with dystonia (MOPED): A familial epilepsy syndrome. Epilepsy Research, 2015, 114, 98-105.	1.6	7
476	Is FGF13 a major contributor to genetic epilepsy with febrile seizures plus?. Epilepsy Research, 2016, 128, 48-51.	1.6	7
477	Development of a rapid functional assay that predicts GLUT1 disease severity. Neurology: Genetics, 2018, 4, e297.	1.9	7
478	Double somatic mosaicism in a child with Dravet syndrome. Neurology: Genetics, 2019, 5, e333.	1.9	7
479	Reanalysis and optimisation of bioinformatic pipelines is critical for mutation detection. Human Mutation, 2019, 40, 374-379.	2.5	7
480	Self-limited focal epilepsy and childhood apraxia of speech with WAC pathogenic variants. European Journal of Paediatric Neurology, 2021, 30, 25-28.	1.6	7
481	Pathogenic <scp><i>MAST3</i></scp> Variants in the <scp>STK</scp> Domain Are Associated with Epilepsy. Annals of Neurology, 2021, 90, 274-284.	5.3	7
482	Selfâ€reported impact of developmental stuttering across the lifespan. Developmental Medicine and Child Neurology, 2022, 64, 1297-1306.	2.1	7
483	New autosomal-dominant partial epilepsy syndrome. Pediatric Neurology, 1994, 11, 95.	2.1	6
484	The role of genetics and ethnicity in epilepsy management. Acta Neurologica Scandinavica, 2005, 112, 47-51.	2.1	6
485	Variants in KCNJ11 and BAD do not predict response to ketogenic dietary therapies for epilepsy. Epilepsy Research, 2015, 118, 22-28.	1.6	6
486	Evaluation of multiple putative risk alleles within the $15q13.3$ region for genetic generalized epilepsy. Epilepsy Research, 2015 , 117 , $70-73$.	1.6	6

#	Article	IF	Citations
487	Human <i>GABRG2</i> generalized epilepsy. Neurology: Genetics, 2019, 5, e340.	1.9	6
488	Atypical development of Broca's area in a large family with inherited stuttering. Brain, 2022, 145, 1177-1188.	7.6	6
489	Identification of a recurrent mosaic <i>KRAS</i> variant in brain tissue from an individual with nevus sebaceous syndrome. Journal of Physical Education and Sports Management, 2021, 7, a006133.	1.2	6
490	Multifocal epilepsy: the role of palliative resection - intractable frontal and occipital lobe epilepsy secondary to radiotherapy for acute lymphoblastic leukaemia. Epileptic Disorders, 2008, 10, 362-70.	1.3	6
491	Genetics of the epilepsies: Channelopathies and beyond. Epilepsia, 2011, 52, 192-193.	5.1	5
492	A novel GEFS+ locus on 12p13.33 in a large Roma family. Epilepsy Research, 2011, 97, 198-207.	1.6	5
493	Evaluation of GLUT1 variation in non-acquired focal epilepsy. Epilepsy Research, 2017, 133, 54-57.	1.6	5
494	When Monogenic Isn't Monogenicâ€"Unravelling the Oligogenic Architecture of the Developmental and Epileptic Encephalopathies. Epilepsy Currents, 2019, 19, 417-419.	0.8	5
495	Fragile Females: Case Series of Epilepsy in Girls With <i>FMR1</i> Disruption. Pediatrics, 2019, 144, .	2.1	5
496	Transcriptome analysis of a ring chromosome 20 patient cohort. Epilepsia, 2021, 62, e22-e28.	5.1	5
497	Shared genetic basis between genetic generalized epilepsy and background electroencephalographic oscillations. Epilepsia, 2021, 62, 1518-1527.	5.1	5
498	Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies. Expert Review of Neurotherapeutics, 2021, 21, 1309-1316.	2.8	5
499	Infantileâ€onset myoclonic developmental and epileptic encephalopathy: A new <i>RARS2</i> phenotype. Epilepsia Open, 2022, 7, 170-180.	2.4	5
500	Impaired Color Recognition in HCN1 Epilepsy: A Single Case Report. Frontiers in Neurology, 2022, 13, 834252.	2.4	5
501	Siblings with refractory occipital epilepsy showing localized network activity on <scp>EEG</scp> â€f <scp>MRI</scp> . Epilepsia, 2013, 54, e28-32.	5.1	4
502	How long for epilepsy remission in the <scp>ILAE</scp> definition?. Epilepsia, 2017, 58, 1486-1487.	5.1	4
503	Myoclonic absence seizures with complex gestural automatisms. European Journal of Paediatric Neurology, 2018, 22, 532-535.	1.6	4
504	A new classification and class 1 evidence transform clinical practice in epilepsy. Lancet Neurology, The, $2018,17,7$ -8.	10.2	4

#	Article	IF	CITATIONS
505	Generation of seven iPSC lines from peripheral blood mononuclear cells suitable to investigate Autism Spectrum Disorder. Stem Cell Research, 2019, 39, 101516.	0.7	4
506	Classification as autonomic versus sensory seizures. Epilepsia, 2019, 60, 2003-2005.	5.1	4
507	Intestinal-Cell Kinase and Juvenile Myoclonic Epilepsy. New England Journal of Medicine, 2019, 380, e24.	27.0	4
508	No evidence for a BRD 2 promoter hypermethylation inÂblood leukocytes of Europeans with juvenile myoclonicÂepilepsy. Epilepsia, 2019, 60, e31-e36.	5.1	4
509	Genetic convergence of developmental and epileptic encephalopathies and intellectual disability. Developmental Medicine and Child Neurology, 2021, 63, 1441-1447.	2.1	4
510	<i>PIGN</i> encephalopathy: Characterizing the epileptology. Epilepsia, 2022, 63, 974-991.	5.1	4
511	Respiratory syncytial virus epidemic during the COVIDâ€19 pandemic. Journal of Paediatrics and Child Health, 2022, 58, 215-216.	0.8	4
512	Association studies and functional validation or functional validation alone? Epilepsy Research, 2007, 74, 237-238.	1.6	3
513	Advances in epilepsy shed light on key questions. Nature Reviews Neurology, 2013, 9, 66-68.	10.1	3
514	Hemiconvulsion-hemiplegia-epilepsy evolving to contralateral hemi-Lennox-Gastaut-like phenotype. Brain and Development, 2018, 40, 425-428.	1.1	3
515	Mosaic uniparental disomy results in GM1 gangliosidosis with normal enzyme assay. American Journal of Medical Genetics, Part A, 2018, 176, 230-234.	1.2	3
516	KANSL1 variation is not a major contributing factor in self-limited focal epilepsy syndromes of childhood. PLoS ONE, 2018, 13, e0191546.	2.5	3
517	Looking to the Future: Speech, Language, and Academic Outcomes in an Adolescent with Childhood Apraxia of Speech. Folia Phoniatrica Et Logopaedica, 2019, 71, 203-215.	1.1	3
518	Why should a neurologist worry about climate change?. Lancet Neurology, The, 2019, 18, 335-336.	10.2	3
519	Tracing Autism Traits in Large Multiplex Families to Identify Endophenotypes of the Broader Autism Phenotype. International Journal of Molecular Sciences, 2020, 21, 7965.	4.1	3
520	Author response: SYNGAP1 encephalopathy: A distinctive generalized developmental and epileptic encephalopathy. Neurology, 2020, 94, 370-370.	1.1	3
521	Epidemiology of Treated Epilepsy in New Zealand Children. Neurology, 2021, 97, e1933-e1941.	1.1	3
522	Solving the Molecular Basis of the Developmental and Epileptic Encephalopathies: Are We there Yet?. Epilepsy Currents, 2021, 21, 153575972110381.	0.8	3

#	Article	IF	Citations
523	Genetic (Generalized) Epilepsy with Febrile Seizures Plus., 2008,, 29-33.		3
524	The Key to FAME: Intronic Repeat Expansions Cause Human Epilepsies. Epilepsy Currents, 2018, 18, 238-239.	0.8	2
525	Improving Specificity of <scp>Cerebrospinal Fluid</scp> Liquid Biopsy for Genetic Testing. Annals of Neurology, 2021, 90, 693-694.	5.3	2
526	A family study implicates <i>GBE1</i> in the etiology of autism spectrum disorder. Human Mutation, 2022, 43, 16-29.	2.5	2
527	Clinical, biochemical and genetic characteristics of MOGS-CDG: a rare congenital disorder of glycosylation. Journal of Medical Genetics, 2022, 59, 1104-1115.	3.2	2
528	Epileptiform EEG abnormalities in children with language regression. Neurology, 2006, 67, 1527-1527.	1.1	1
529	Genetic Epilepsies. , 2007, , 371-383.		1
530	Vaccination and Dravet syndrome – Authors' reply. Lancet Neurology, The, 2010, 9, 1148-1149.	10.2	1
531	Is a microRNAâ€328 binding site in <i>PAX6</i> associated with Rolandic epilepsy?. Annals of Clinical and Translational Neurology, 2017, 4, 276-277.	3.7	1
532	Enhanced Sensitivity to Angry Voices in People with Features of the Broader Autism Phenotype. Journal of Autism and Developmental Disorders, 2018, 48, 3899-3911.	2.7	1
533	Protocol for a single patient therapy plan: A randomised, doubleâ€blind, placeboâ€controlled Nâ€ofâ€1 trial to assess the efficacy of cannabidiol in patients with intractable epilepsy. Journal of Paediatrics and Child Health, 2020, 56, 1918-1923.	0.8	1
534	How gene discovery has transformed management of people with epilepsy. European Journal of Paediatric Neurology, 2020, 24, 2.	1.6	1
535	Integrated in silico and experimental assessment of disease relevance of <i>PCDH19</i> Âmissense variants. Human Mutation, 2021, 42, 1030-1041.	2.5	1
536	OUP accepted manuscript. Brain, 2022, , .	7.6	1
537	Focal Epilepsy in Children With Tuberous Sclerosis Complex: Does Vigabatrin Control Focal Seizures?. Journal of Child Neurology, 2022, , 088307382110483.	1.4	1
538	Comment. Epilepsia, 2006, 47, 1751-1752.	5.1	0
539	631: Cognitive dysfunction and the distribution of spike activity in BECTS. Journal of Clinical Neuroscience, 2007, 14, 1028.	1.5	O
540	Graft-Versus-Host Disease., 2009,, 746-746.		0

#	Article	IF	CITATIONS
541	35. Peripheral nerve excitability testing shows distinctive ion channel dysfunction in patients with KCNQ2 mutations and epilepsy. Journal of Clinical Neuroscience, 2010, 17, 1621.	1.5	O
542	Genetic epilepsy with febrile seizures plus., 0,, 74-77.		O
543	Satellite Symposium Abstract. Epilepsia, 2012, 53, 246-250.	5.1	O
544	Migrating partial seizures of infancy: delineation of the clinical and genetic features in a national patient cohort. Lancet, The, 2014, 383, S14.	13.7	0
545	Corrigendum to "Clinical and genetic analysis of a family with two rare reflex epilepsies―[Seizure – Eur. J. Epilepsy 29 (2015) 90–96]. Seizure: the Journal of the British Epilepsy Association, 2015, 33, 104.	2.0	O
546	PIK-ing the right gene for polymicrogyria. Lancet Neurology, The, 2015, 14, 1147-1148.	10.2	0
547	Cultural relevance of the global impact of Dravet Syndrome in Australia, Italy, the US and UK. European Journal of Paediatric Neurology, 2017, 21, e187.	1.6	O
548	Response to the numbering of seizure types. Epilepsia, 2017, 58, 1300-1301.	5.1	0
549	Severe cognitive impairment and early-onset epilepsy in six patients with the de novo p.Glu590Lys variant of CUX2. European Journal of Paediatric Neurology, 2017, 21, e194.	1.6	O
550	Reply. Annals of Neurology, 2017, 81, 328-329.	5.3	0
551	New seizure names - What happened to the "Complex partial seizure�. Journal of the Neurological Sciences, 2017, 381, 2.	0.6	O
552	Quantitative analysis of phenotypic elements augments traditional electroclinical classification of common familial epilepsies. Epilepsia, 2019, 60, 2194-2203.	5.1	0
553	009â€Axonal excitability properties in dravet's syndrome reflect effect of loss of sodium channels. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, A4.1-A4.	1.9	O
554	Effect of ZX008 (Fenfluramine HCl Oral Solution) on Total Seizures in Dravet Syndrome. Epilepsy and Behavior, 2019, 101, 106789.	1.7	0
555	Long-Term Cardiovascular Safety of Fenfluramine HCl in the Treatment of Dravet Syndrome: Interim Analysis of an Open-Label Safety Extension Study. Epilepsy and Behavior, 2019, 101, 106791.	1.7	0
556	The Australian Academy of Health and Medical Sciences: an authoritative, independent voice in the Australian landscape. Medical Journal of Australia, 2021, 214, 502.	1.7	0
557	Generalized (Genetic) Epilepsy with Febrile Seizures Plus, Severe Myoclonic Epilepsy of Infancy. , 2009, , 693-695.		0
558	OUP accepted manuscript. Brain, 2019, 142, 2173-2175.	7.6	0

#	Article	IF	CITATIONS
559	(CBD) Significantly Reduces Convulsive Seizure Frequency in Dravet Syndrome: Results of a Dose-Ranging, Multicentre, Randomised, Double-Blind, Placebo-Controlled Trial. , 2019, 50, .		O
560	Lightning progress in child neurology in the past 20 years. Lancet Neurology, The, 2022, 21, 111-113.	10.2	0