
Daniel D Moran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3501551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The material footprint of nations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6271-6276.	3.3	1,114
2	BUILDING EORA: A GLOBAL MULTI-REGION INPUT–OUTPUT DATABASE AT HIGH COUNTRY AND SECTOR RESOLUTION. Economic Systems Research, 2013, 25, 20-49.	1.2	991
3	International trade drives biodiversity threats in developing nations. Nature, 2012, 486, 109-112.	13.7	906
4	Mapping the Structure of the World Economy. Environmental Science & Technology, 2012, 46, 8374-8381.	4.6	740
5	International trade of scarce water. Ecological Economics, 2013, 94, 78-85.	2.9	363
6	Measuring sustainable development — Nation by nation. Ecological Economics, 2008, 64, 470-474.	2.9	302
7	Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change, 2019, 56, 1-10.	3.6	289
8	International trade undermines national emission reduction targets: New evidence from air pollution. Global Environmental Change, 2014, 24, 52-59.	3.6	269
9	Carbon footprints of 13 000 cities. Environmental Research Letters, 2018, 13, 064041.	2.2	252
10	A research agenda for improving national Ecological Footprint accounts. Ecological Economics, 2009, 68, 1991-2007.	2.9	239
11	National greenhouse-gas accounting for effective climate policy on international trade. Nature Climate Change, 2015, 5, 431-435.	8.1	216
12	CONVERGENCE BETWEEN THE EORA, WIOD, EXIOBASE, AND OPENEU'S CONSUMPTION-BASED CARBON ACCOUNTS. Economic Systems Research, 2014, 26, 245-261.	1.2	209
13	Frameworks for Comparing Emissions Associated with Production, Consumption, And International Trade. Environmental Science & Technology, 2012, 46, 172-179.	4.6	189
14	The Ecological Footprint of cities and regions: comparing resource availability with resource demand. Environment and Urbanization, 2006, 18, 103-112.	1.5	188
15	Compiling and using input–output frameworks through collaborative virtual laboratories. Science of the Total Environment, 2014, 485-486, 241-251.	3.9	151
16	Identifying species threat hotspots from global supply chains. Nature Ecology and Evolution, 2017, 1, 23.	3.4	144
17	Mapping the Carbon Footprint of Nations. Environmental Science & Technology, 2016, 50, 10512-10517.	4.6	137
18	Does ecologically unequal exchange occur?, Ecological Economics, 2013, 89, 177-186,	2.9	126

DANIEL D MORAN

#	Article	IF	CITATIONS
19	Quantifying the potential for consumer-oriented policy to reduce European and foreign carbon emissions. Climate Policy, 2020, 20, S28-S38.	2.6	96
20	Decoupling or delusion? Measuring emissions displacement in foreign trade. Global Environmental Change, 2018, 49, 27-34.	3.6	94
21	Decoupling between human development and energy consumption within footprint accounts. Journal of Cleaner Production, 2018, 202, 1145-1157.	4.6	90
22	Particulate matter-attributable mortality and relationships with carbon dioxide in 250 urban areas worldwide. Scientific Reports, 2019, 9, 11552.	1.6	89
23	Resource footprints and their ecosystem consequences. Scientific Reports, 2017, 7, 40743.	1.6	74
24	The Global MRIO Lab – charting the world economy. Economic Systems Research, 2017, 29, 158-186.	1.2	74
25	Trade and the role of non-food commodities for global eutrophication. Nature Sustainability, 2018, 1, 314-321.	11.5	68
26	Uncertainty of Consumption-Based Carbon Accounts. Environmental Science & Technology, 2018, 52, 7577-7586.	4.6	67
27	Putting all foods on the same table: Achieving sustainable food systems requires full accounting. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18152-18156.	3.3	66
28	FABIO—The Construction of the Food and Agriculture Biomass Input–Output Model. Environmental Science & Technology, 2019, 53, 11302-11312.	4.6	63
29	Prioritizing Consumptionâ€Based Carbon Policy Based on the Evaluation of Mitigation Potential Using Inputâ€Output Methods. Journal of Industrial Ecology, 2018, 22, 540-552.	2.8	61
30	Trading spaces: Calculating embodied Ecological Footprints in international trade using a Product Land Use Matrix (PLUM). Ecological Economics, 2009, 68, 1938-1951.	2.9	59
31	The structure, drivers and policy implications of the European carbon footprint. Climate Policy, 2020, 20, S39-S57.	2.6	59
32	How severe space weather can disrupt global supply chains. Natural Hazards and Earth System Sciences, 2014, 14, 2749-2759.	1.5	57
33	Tracing global supply chains to air pollution hotspots. Environmental Research Letters, 2016, 11, 094017.	2.2	54
34	On the suitability of input–output analysis for calculating product-specific biodiversity footprints. Ecological Indicators, 2016, 60, 192-201.	2.6	52
35	Entropy-based Chinese city-level MRIO table framework. Economic Systems Research, 2022, 34, 519-544.	1.2	51
36	Ageing society in developed countries challenges carbon mitigation. Nature Climate Change, 2022, 12, 241-248.	8.1	51

DANIEL D MORAN

#	Article	IF	CITATIONS
37	Time Matters: The Carbon Footprint of Everyday Activities in Austria. Ecological Economics, 2019, 164, 106357.	2.9	49
38	From Satellite to Supply Chain: New Approaches Connect Earth Observation to Economic Decisions. One Earth, 2020, 3, 5-8.	3.6	49
39	The Inequality Footprints of Nations: A Novel Approach to Quantitative Accounting of Income Inequality. PLoS ONE, 2014, 9, e110881.	1.1	47
40	Global Supply Chains of Coltan. Journal of Industrial Ecology, 2015, 19, 357-365.	2.8	46
41	Identifying critical supply chain paths and key sectors for mitigating primary carbonaceous PM _{2.5} mortality in Asia. Economic Systems Research, 2017, 29, 105-123.	1.2	45
42	Beyond peak emission transfers: historical impacts of globalization and future impacts of climate policies on international emission transfers. Climate Policy, 2020, 20, S14-S27.	2.6	45
43	The footprint of using metals: new metrics of consumption and productivity. Environmental Economics and Policy Studies, 2015, 17, 369-388.	0.8	44
44	Greenhouse gas emissions from global cities under SSP/RCP scenarios, 1990 to 2100. Global Environmental Change, 2022, 73, 102478.	3.6	41
45	Spatial variation in household consumption-based carbon emission inventories for 1200 Japanese cities. Environmental Research Letters, 2020, 15, 114053.	2.2	40
46	Meat Consumption Does Not Explain Differences in Household Food Carbon Footprints in Japan. One Earth, 2019, 1, 464-471.	3.6	34
47	INVESTIGATING ALTERNATIVE APPROACHES TO HARMONISE MULTI-REGIONAL INPUT–OUTPUT DATA. Economic Systems Research, 2014, 26, 354-385.	1.2	32
48	Time to rethink trophic levels in aquaculture policy. Reviews in Aquaculture, 2021, 13, 1583-1593.	4.6	31
49	Using Ecological Footprint accounts: from analysis to applications. International Journal of Environment and Sustainable Development, 2004, 3, 293.	0.2	30
50	Interpretation and application of the Ecological Footprint: A reply to Fiala (2008). Ecological Economics, 2009, 68, 929-930.	2.9	28
51	The Swedish footprint: A multi-model comparison. Journal of Cleaner Production, 2019, 209, 1578-1592.	4.6	28
52	Variation in trends of consumption based carbon accounts. Scientific Data, 2019, 6, 99.	2.4	25
53	Quantifying Europe's biodiversity footprints and the role of urbanization and income. Global Sustainability, 2020, 3, .	1.6	23
54	A novel maximum entropy approach to hybrid monetary-physical supply-chain modelling and its application to biodiversity impacts of palm oil embodied in consumption. Environmental Research Letters, 2018, 13, 115002.	2.2	20

DANIEL D MORAN

#	Article	IF	CITATIONS
55	A NON-SIGN-PRESERVING RAS VARIANT. Economic Systems Research, 2014, 26, 197-208.	1.2	17
56	A Note on the Magnitude of the Feedback Effect in Environmentally Extended Multiâ€Region Inputâ€Output Tables. Journal of Industrial Ecology, 2018, 22, 532-539.	2.8	17
57	A CYCLING METHOD FOR CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES FROM INCOMPLETE DATA. Economic Systems Research, 2012, 24, 413-432.	1.2	16
58	Integrating Life Cycle and Impact Assessments to Map Food's Cumulative Environmental Footprint. One Earth, 2020, 3, 65-78.	3.6	16
59	Structural Change and the Environment. Journal of Industrial Ecology, 2012, 16, 623-635.	2.8	14
60	TSUNAGARI: a new interdisciplinary and transdisciplinary study toward conservation and sustainable use of biodiversity and ecosystem services. Ecological Research, 2018, 33, 35-49.	0.7	12
61	Estimating CO ₂ emissions for 108 000 European cities. Earth System Science Data, 2022, 14, 845-864.	3.7	10
62	CO2 embodied in trade: trends and fossil fuel drivers. Environmental Science and Pollution Research, 2021, 28, 27712-27730.	2.7	9
63	Reply to 'Consistency of technology-adjusted consumption-based accounting'. Nature Climate Change, 2016, 6, 730-730.	8.1	8
64	Balancing and reconciling large multi-regional input–output databases using parallel optimisation and high-performance computing. Journal of Economic Structures, 2019, 8, .	0.6	7
65	Carbon-Footprint Accounting for the Next Phase of Globalization: Status and Opportunities. One Earth, 2019, 1, 35-38.	3.6	6
66	Response to Hornborg et al Ecological Economics, 2015, 119, 419.	2.9	3
67	Carbon Footprints Concentrated in Few Global Cities. SSRN Electronic Journal, 0, , .	0.4	3
68	CO ₂ Embedded in Trade: Trends and Fossil Fuel Drivers. SSRN Electronic Journal, 2017, , .	0.4	0
69	Do Amphibians and Cash Crops Compete for Scarce Water? A Spatial Correlation Analysis. Sustainability, 2019, 11, 1822.	1.6	0
70	The Eora MRIO. Journal of Life Cycle Assessment Japan, 2013, 9, 97-100.	0.0	0