Sarah Frisken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/350143/publications.pdf Version: 2024-02-01

SADAH EDISKEN

#	Article	IF	CITATIONS
1	Pose Estimation and Non-Rigid Registration for Augmented Reality During Neurosurgery. IEEE Transactions on Biomedical Engineering, 2022, 69, 1310-1317.	4.2	7
2	Cortical Vessel Segmentation for Neuronavigation Using Vesselness-Enforced Deep Neural Networks. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 327-330.	3.2	2
3	Computer simulation of tumour <scp>resectionâ€induced</scp> brain deformation by a meshless approach. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38, e3539.	2.1	4
4	Incorporating Uncertainty Into Path Planning for Minimally Invasive Robotic Neurosurgery. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 5-16.	3.2	1
5	Automatic framework for patient-specific modelling of tumour resection-induced brain shift. Computers in Biology and Medicine, 2022, 143, 105271.	7.0	4
6	NousNav: A low-cost neuronavigation system for deployment in lower-resource settings. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1745-1750.	2.8	3
7	Predicted microscopic cortical brain images for optimal craniotomy positioning and visualisation. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2021, 9, 407-413.	1.9	1
8	Deep Cortical Vessel Segmentation Driven By Data Augmentation With Neural Image Analogy. , 2021, , .		5
9	Challenges and Opportunities of Intraoperative 3D Ultrasound With Neuronavigation in Relation to Intraoperative MRI. Frontiers in Oncology, 2021, 11, 656519.	2.8	25
10	Automatic non-rigid registration of preoperative MRI and intraoperative US for US-guided neurosurgery - A preliminary study. , 2021, , .		0
11	A comparison of thin-plate spline deformation and finite element modeling to compensate for brain shift during tumor resection. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 75-85.	2.8	10
12	Adaptive Physics-Based Non-Rigid Registration for Immersive Image-Guided Neuronavigation Systems. Frontiers in Digital Health, 2020, 2, 613608.	2.8	5
13	Deformation Aware Augmented Reality for Craniotomy Using 3D/2D Non-rigid Registration of Cortical Vessels. Lecture Notes in Computer Science, 2020, 12264, 735-744.	1.3	7
14	Alignment of cortical vessels viewed through the surgical microscope with preoperative imaging to compensate for brain shift. , 2020, 11315, .		3
15	Deformable MRI-Ultrasound registration using correlation-based attribute matching for brain shift correction: Accuracy and generality in multi-site data. NeuroImage, 2019, 202, 116094.	4.2	16
16	3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept. Journal of Neurosurgery, 2018, 130, 248-255.	1.6	15
17	Using the variogram for vector outlier screening: application to feature-based image registration. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1871-1880.	2.8	17
18	Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1525-1538.	2.8	40

#	Article	IF	CITATIONS
19	3D Printing and Intraoperative Neuronavigation Tailoring for Skull Base Reconstruction after Extended Endoscopic Endonasal Surgery. Journal of Neurological Surgery, Part B: Skull Base, 2018, 79, S1-S188.	0.8	0
20	Applications of Ultrasound in the Resection of Brain Tumors. Journal of Neuroimaging, 2017, 27, 5-15.	2.0	104
21	Automated detection of intracranial aneurysms based on parent vessel 3D analysis. Medical Image Analysis, 2010, 14, 149-159.	11.6	48