
Thi Thanh Le Dang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/350100/publications.pdf Version: 2024-02-01

ΤΗΙ ΤΗΛΝΗ ΓΕ ΠΛΝΟ

#	Article	IF	CITATIONS
1	Design and fabrication of effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification. Sensors and Actuators B: Chemical, 2022, 351, 130979.	7.8	11
2	Electronic noses based on metal oxide nanowires: A review. Nanotechnology Reviews, 2022, 11, 897-925.	5.8	21
3	A novel design and fabrication of self-heated In2O3 nanowire gas sensor on glass for ethanol detection. Sensors and Actuators A: Physical, 2022, 345, 113769.	4.1	24
4	Highly selective H2S gas sensor based on WO3-coated SnO2 nanowires. Materials Today Communications, 2021, 26, 102094.	1.9	29
5	A label-free electrochemical biosensor based on screen-printed electrodes modified with gold nanoparticles for quick detection of bacterial pathogens. Materials Today Communications, 2021, 26, 101726.	1.9	51
6	Enhanced NH3 and H2 gas sensing with H2S gas interference using multilayer SnO2/Pt/WO3 nanofilms. Journal of Hazardous Materials, 2021, 412, 125181.	12.4	52
7	ZnO coral-like nanoplates decorated with Pd nanoparticles for enhanced VOC gas sensing. Journal of Science: Advanced Materials and Devices, 2021, 6, 453-461.	3.1	15
8	Enhanced NO2 gas-sensing performance at room temperature using exfoliated MoS2 nanosheets. Sensors and Actuators A: Physical, 2021, 332, 113137.	4.1	28
9	Ultrasensitive NO2 gas sensing performance of two dimensional ZnO nanomaterials: Nanosheets and nanoplates. Ceramics International, 2021, 47, 28811-28820.	4.8	31
10	Electrochemical stability of screen-printed electrodes modified with Au nanoparticles for detection of methicillin-resistant Staphylococcus aureus. Materials Chemistry and Physics, 2020, 255, 123562.	4.0	26
11	Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing. Chemosensors, 2020, 8, 19.	3.6	14
12	Effect of light activation on chemical gas sensors based on aligned nanowires. , 2020, , .		0
13	Stable Electrochemical Measurements of Platinum Screen-Printed Electrodes Modified with Vertical ZnO Nanorods for Bacterial Detection. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	10
14	An effective H ₂ S sensor based on SnO ₂ nanowires decorated with NiO nanoparticles by electron beam evaporation. RSC Advances, 2019, 9, 13887-13895.	3.6	26
15	New Design of ZnO Nanorod- and Nanowire-Based NO ₂ Room-Temperature Sensors Prepared by Hydrothermal Method. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	17
16	C ₂ H ₅ OH and NO ₂ sensing properties of ZnO nanostructures: correlation between crystal size, defect level and sensing performance. RSC Advances, 2018, 8, 5629-5639.	3.6	55
17	A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method. RSC Advances, 2018, 8, 19449-19455.	3.6	57
18	Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sensors and Actuators B: Chemical, 2018, 270, 158-166.	7.8	53

Thi Thanh Le Dang

#	Article	IF	CITATIONS
19	Selective discrimination of hazardous gases using one single metal oxide resistive sensor. Sensors and Actuators B: Chemical, 2018, 277, 121-128.	7.8	54
20	Tensile, Thermal, Dielectric and Morphological Properties of Polyoxymethylene/Silica Nanocomposites. Journal of Nanoscience and Nanotechnology, 2018, 18, 4963-4970.	0.9	7
21	Selective hydrogen sensor for liquefied petroleum gas steam reforming fuel cell systems. International Journal of Hydrogen Energy, 2017, 42, 740-748.	7.1	23
22	Low-temperature prototype hydrogen sensors using Pd-decorated SnO2 nanowires for exhaled breath applications. Sensors and Actuators B: Chemical, 2017, 253, 156-163.	7.8	80
23	Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 224, 163-170.	3.5	67
24	On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review. Journal of Science: Advanced Materials and Devices, 2017, 2, 263-285.	3.1	84
25	Fabrication of Electrochemical Electrodes Based on Platinum and (ext{ZnO}) Nanofibers for Biosensing Applications. Communications in Physics, 2017, 27, 221.	0.0	1
26	CuO Nanofibers Prepared by Electrospinning for Gas Sensing Application: Effect of Copper Salt Concentration. Journal of Nanoscience and Nanotechnology, 2016, 16, 7910-7918.	0.9	11
27	Functionalized ZnO Microbelt as Improved CO Sensor. Procedia Engineering, 2016, 168, 1090-1093.	1.2	0
28	Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls. Journal of Science: Advanced Materials and Devices, 2016, 1, 45-50.	3.1	37
29	Dual-selective hydrogen and ethanol sensor for steam reforming systems. Sensors and Actuators B: Chemical, 2016, 236, 1011-1019.	7.8	26
30	Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles. Sensors and Actuators B: Chemical, 2016, 223, 453-460.	7.8	70
31	Ammonia-Gas-Sensing Characteristics of WO ₃ /Carbon Nanotubes Nanocomposites: Effect of Nanotube Content and Sensing Mechanism. Science of Advanced Materials, 2016, 8, 524-533.	0.7	15
32	Hydrothermal Growth and Hydrogen Selective Sensing of Nickel Oxide Nanowires. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	15
33	Comparative gas-sensing performance of 1D and 2D ZnO nanostructures. Sensors and Actuators B: Chemical, 2015, 220, 1152-1160.	7.8	81
34	Depletion layer and dimensionality of ZnO nanostructures. , 2015, , .		1
35	Polycrystalline NiO Nanowires: Scalable Growth and Ethanol Sensing. Procedia Engineering, 2015, 120, 427-434.	1.2	19
36	Single crystal cupric oxide nanowires: Length- and density-controlled growth and gas-sensing characteristics. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 58, 16-23.	2.7	8

Thi Thanh Le Dang

#	Article	IF	CITATIONS
37	Density-controllable growth of SnO2 nanowire junction-bridging across electrode for low-temperature NO2 gas detection. Journal of Materials Science, 2013, 48, 7253-7259.	3.7	21
38	Facile synthesis of SnO2–ZnO core–shell nanowires for enhanced ethanol-sensing performance. Current Applied Physics, 2013, 13, 1637-1642.	2.4	53
39	A comparative study on the NH <sub align="right">3 gas-sensing properties of ZnO, SnO<sub align=right>2, and WO_{3 nanowires. International Journal of Nanotechnology, 2011, 8, 174.}</sub </sub>	0.2	13
40	On-chip fabrication of SnO2-nanowire gas sensor: The effect of growth time on sensor performance. Sensors and Actuators B: Chemical, 2010, 146, 361-367.	7.8	102
41	Synthesis and LPG-sensing properties of TiO ₂ nanowires. Journal of Physics: Conference Series, 2009, 187, 012086.	0.4	10