Maija E Marushchak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3500718/publications.pdf Version: 2024-02-01

		393982	610482
24	1,511	19	24
papers	citations	h-index	g-index
20	20	20	2242
52	52	52	2243
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20438-20446.	3.3	307
2	Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Global Change Biology, 2017, 23, 3121-3138.	4.2	187
3	Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Global Change Biology, 2011, 17, 2601-2614.	4.2	145
4	Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6238-6243.	3.3	119
5	Nitrous oxide emissions from permafrost-affected soils. Nature Reviews Earth & Environment, 2020, 1, 420-434.	12.2	90
6	Nongrowing season methane emissions–a significant component of annual emissions across northern ecosystems. Global Change Biology, 2018, 24, 3331-3343.	4.2	89
7	Statistical upscaling of ecosystem CO ₂ fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Clobal Change Biology, 2021, 27, 4040-4059.	4.2	83
8	Carbon dioxide balance of subarctic tundra from plot to regional scales. Biogeosciences, 2013, 10, 437-452.	1.3	65
9	Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Global Change Biology, 2019, 25, 1746-1764.	4.2	52
10	Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Global Change Biology, 2018, 24, 5188-5204.	4.2	45
11	Modeling <scp>CO</scp> ₂ emissions from <scp>A</scp> rctic lakes: Model development and siteâ€level study. Journal of Advances in Modeling Earth Systems, 2017, 9, 2190-2213.	1.3	38
12	Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements. Biogeosciences, 2016, 13, 597-608.	1.3	37
13	Microbial Respiration in Arctic Upland and Peat Soils as a Source of Atmospheric Carbon Dioxide. Ecosystems, 2014, 17, 112-126.	1.6	35
14	Magnitude and Pathways of Increased Nitrous Oxide Emissions from Uplands Following Permafrost Thaw. Environmental Science & Technology, 2018, 52, 9162-9169.	4.6	33
15	Archaeal nitrification is a key driver of high nitrous oxide emissions from arctic peatlands. Soil Biology and Biochemistry, 2019, 137, 107539.	4.2	33
16	A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm. Environmental Research Letters, 2022, 17, 013004.	2.2	29
17	In-depth characterization of denitrifier communities across different soil ecosystems in the tundra. Environmental Microbiomes, 2022, 17, .	2.2	25
18	Thawing Yedoma permafrost is a neglected nitrous oxide source. Nature Communications, 2021, 12, 7107.	5.8	24

#	Article	IF	CITATIONS
19	The ABCflux database: Arctic–boreal CO ₂ flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data, 2022, 14, 179-208.	3.7	22
20	Variation in N ₂ Fixation in Subarctic Tundra in Relation to Landscape Position and Nitrogen Pools and Fluxes. Arctic, Antarctic, and Alpine Research, 2016, 48, 111-125.	0.4	19
21	NUMERICAL SIMULATION OF METHANE EMISSION FROM SUBARCTIC LAKE IN KOMI REPUBLIC (RUSSIA). Geography, Environment, Sustainability, 2016, 9, 58-74.	0.6	6
22	Emissions of atmospherically reactive gases nitrous acid and nitric oxide from Arctic permafrost peatlands. Environmental Research Letters, 2022, 17, 024034.	2.2	5
23	Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils. Biogeosciences, 2022, 19, 2683-2698.	1.3	4
24	Warming climate forcing impact from a sub-arctic peatland as a result of late Holocene permafrost aggradation and initiation of bare peat surfaces. Quaternary Science Reviews, 2021, 264, 107022.	1.4	3