Jiaqi Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3500449/publications.pdf

Version: 2024-02-01

471509 477307 1,691 29 17 29 citations h-index g-index papers 29 29 29 2828 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heterostructures assembled from graphitic carbon nitride and Ti3C2T MXene as high-capacity cathode for aluminum batteries. Journal of Alloys and Compounds, 2022, 896, 162901.	5.5	10
2	Boron-doping-induced defect engineering enables high performance of a graphene cathode for aluminum batteries. Inorganic Chemistry Frontiers, 2022, 9, 925-934.	6.0	16
3	Laser-radiated tellurium vacancies enable high-performance telluride molybdenum anode for aqueous zinc-ion batteries. Energy Storage Materials, 2022, 51, 29-37.	18.0	22
4	Constructing NiCo ₂ Se ₄ /NiCoS ₄ heterostructures for high-performance rechargeable aluminum battery cathodes. Inorganic Chemistry Frontiers, 2022, 9, 4041-4048.	6.0	3
5	Interfacial engineering of Bi2Te3/Sb2Te3 heterojunction enables high–energy cathode for aluminum batteries. Energy Storage Materials, 2021, 38, 231-240.	18.0	49
6	Well-defined 3-Aminopropyltriethoxysilane functionalized magnetite nanoparticles and their adsorption performance for partially hydrolyzed polyacrylamide from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124288.	4.7	16
7	Dispersed distribution derived integrated anode for lithium ion battery. Journal of Materials Science and Technology, 2019, 35, 2319-2324.	10.7	1
8	Kinetic Studies on Guanidine-Superbase-Promoted Ring-Opening Polymerization of $\hat{l}\mu\text{-Caprolactone}.$ Synlett, 2019, 30, 928-931.	1.8	3
9	Waste Utilization Method for $\hat{\Gamma}$ -MnO2 Anode Composited with MWCNT and Graphene by Embedding on Conductive Paper for Lithium-Ion Battery. Nano, 2019, 14, 1950051.	1.0	3
10	Chiral nanostructures of isosorbide- and isomannide-based polyurethanes. Polymer, 2019, 164, 118-125.	3.8	10
11	Control of Calcium Phosphate Nucleation and Transformation through Interactions of Enamelin and Amelogenin Exhibits the "Goldilocks Effect― Crystal Growth and Design, 2018, 18, 7391-7400.	3.0	29
12	Stable and Biocompatible Colloidal Dispersions of Superparamagnetic Iron Oxide Nanoparticles with Minimum Aggregation for Biomedical Applications. Journal of Physical Chemistry C, 2016, 120, 23799-23806.	3.1	17
13	A facile synthesis of superparamagnetic Fe 3 O 4 supraparticles@MIL-100(Fe) core–shell nanostructures: Preparation, characterization and biocompatibility. Journal of Colloid and Interface Science, 2016, 461, 173-178.	9.4	55
14	Insight into the formation of magnetite mesocrystals from ferrous precursors in ethylene glycol. Chemical Communications, 2015, 51, 15910-15913.	4.1	15
15	Synthesis of magnetite–silica core–shell nanoparticles via direct silicon oxidation. Journal of Colloid and Interface Science, 2014, 432, 43-46.	9.4	40
16	Controlled synthesis of spherical and cubic magnetite nanocrystal clusters. Journal of Crystal Growth, 2013, 372, 170-174.	1.5	6
17	Facile graft of poly(2â€methacryloyloxyethyl phosphorylcholine) onto Fe ₃ O ₄ nanoparticles by ATRP: Synthesis, properties, and biocompatibility. Journal of Biomedical Materials Research - Part A, 2013, 101A, 607-612.	4.0	22
18	Facile synthesis of zinc ferrite nanoparticles as non-lanthanide T1 MRI contrast agents. Journal of Materials Chemistry, 2012, 22, 13500.	6.7	130

#	Article	IF	CITATION
19	Facile synthesis of superparamagnetic Fe-doped ZnO nanoparticles in liquid polyols. Materials Letters, 2010, 64, 2373-2375.	2.6	42
20	Preparation and characterization of hydrophobic magnetite microspheres by a simple solvothermal method. Journal of Physics and Chemistry of Solids, 2010, 71, 412-415.	4.0	9
21	Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation. Nanotechnology, 2010, 21, 235104.	2.6	42
22	Synthesis and characterization of Fe3O4@ZnO core–shell structured nanoparticles. Materials Chemistry and Physics, 2009, 114, 30-32.	4.0	72
23	A Facile Approach to Fabrication of Bifunctional Magnetic-Optical Fe ₃ O ₄ @ZnS Microspheres. Chemistry of Materials, 2009, 21, 4892-4898.	6.7	112
24	Poly(I-lactide) brushes on magnetic multiwalled carbon nanotubes by in-situ ring-opening polymerization. Polymer, 2008, 49, 4989-4994.	3.8	45
25	Preparation and characterization of magnetic multi-walled carbon nanotubes–poly(l-lactide) composite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 208-212.	3.5	25
26	Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. Journal of Colloid and Interface Science, 2007, 305, 366-370.	9.4	434
27	Specific targeting of gliomas with multifunctional superparamagnetic iron oxide nanoparticle optical and magnetic resonance imaging contrast agents. Acta Pharmacologica Sinica, 2007, 28, 2019-2026.	6.1	37
28	Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chemical Communications, 2007, , 5004.	4.1	246
29	In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. Journal of Materials Chemistry, 2007, 17, 1188.	6.7	180