Joanna Raczkowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3500189/publications.pdf

Version: 2024-02-01

62 papers 1,430 citations

257450 24 h-index 35 g-index

62 all docs

62 docs citations

62 times ranked 1526 citing authors

#	Article	IF	CITATIONS
1	Effect of poly(tert-butyl methacrylate) stereoregularity on polymer film interactions with peptides, proteins, and bacteria. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112248.	5.0	4
2	Discrimination between NSIP- and IPF-Derived Fibroblasts Based on Multi-Parameter Characterization of Their Growth, Morphology and Physic-Chemical Properties. International Journal of Molecular Sciences, 2022, 23, 2162.	4.1	2
3	Impact of the various buffer solutions on the temperature-responsive properties of POEGMA-grafted brush coatings. Colloid and Polymer Science, 2022, 300, 487-495.	2.1	12
4	Passive antifouling and active self-disinfecting antiviral surfaces. Chemical Engineering Journal, 2022, 446, 137048.	12.7	46
5	Protein corona of SiO2 nanoparticles with grafted thermoresponsive copolymers: Calorimetric insights on factors affecting entropy vs. enthalpy-driven associations. Applied Surface Science, 2022, 601, 154201.	6.1	9
6	Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: synthesis, properties, and applications. Colloid and Polymer Science, 2021, 299, 363-383.	2.1	43
7	Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials, 2021, 14, 1417.	2.9	24
8	Effect of tuned elasticity and chemical modification of substrate on fibrotic and healthy lung fibroblasts. Micron, 2020, 139, 102948.	2.2	3
9	Dewetting of Polymer Films Controlled by Protein Adsorption. Langmuir, 2020, 36, 11817-11828.	3.5	10
10	Effect of Substrate Stiffness on Physicochemical Properties of Normal and Fibrotic Lung Fibroblasts. Materials, 2020, 13, 4495.	2.9	6
11	Grafted polymer brush coatings for growth of cow granulosa cells and oocyte-cumulus cell complexes. Biointerphases, 2020, 15, 031006.	1.6	4
12	Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Advances, 2020, 10, 10155-10166.	3.6	36
13	Orientation of Biotin-Binding Sites in Streptavidin Adsorbed onto the Surface of Polythiophene Films. Langmuir, 2019, 35, 3058-3066.	3.5	9
14	"Command―surfaces with thermo-switchable antibacterial activity. Materials Science and Engineering C, 2019, 103, 109806.	7.3	34
15	Temperature-Controlled Orientation of Proteins on Temperature-Responsive Grafted Polymer Brushes: Poly(butyl methacrylate) vs Poly(butyl acrylate): Morphology, Wetting, and Protein Adsorption. Biomacromolecules, 2019, 20, 2185-2197.	5.4	36
16	Shape-Controlled synthesis of silver nanoparticles in temperature-responsive grafted polymer brushes for optical applications. Applied Surface Science, 2019, 463, 1124-1133.	6.1	27
17	Glass transition in temperature-responsive poly(butyl methacrylate) grafted polymer brushes. Impact of thickness and temperature on wetting, morphology, and cell growth. Journal of Materials Chemistry B, 2018, 6, 1613-1621.	5.8	19
18	Engineering a Poly(3,4-ethylenedioxythiophene):(Polystyrene Sulfonate) Surface Using Self-Assembling Molecules—A Chemical Library Approach. ACS Omega, 2018, 3, 3631-3639.	3.5	12

#	Article	IF	CITATIONS
19	Discrimination between HCV29 and T24 by controlled proliferation of cells co-cultured on substrates with different elasticity. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 217-222.	3.1	6
20	Adaptability of single melanoma cells to surfaces with distinct hydrophobicity and roughness. Applied Surface Science, 2018, 457, 881-890.	6.1	6
21	Patterning of cancerous cells driven by a combined modification of mechanical and chemical properties of the substrate. European Polymer Journal, 2017, 93, 726-732.	5.4	5
22	Elasticity patterns induced by phase-separation in polymer blend films. Thin Solid Films, 2017, 624, 181-186.	1.8	4
23	Temperature-responsive grafted polymer brushes obtained from renewable sources with potential application as substrates for tissue engineering. Applied Surface Science, 2017, 407, 546-554.	6.1	29
24	Temperature-Controlled Three-Stage Switching of Wetting, Morphology, and Protein Adsorption. ACS Applied Materials & Diterfaces, 2017, 9, 12035-12045.	8.0	34
25	Cholesterol-Based Grafted Polymer Brushes as Alignment Coating with Temperature-Tuned Anchoring for Nematic Liquid Crystals. Langmuir, 2016, 32, 11029-11038.	3.5	25
26	Multilayers of poly(styrene/l±-tert-butoxy-l‰-vinylbenzyl-polyglycidol) microspheres with core-shell morphology: Characterization by AFM, SIMS and XPS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 200-209.	4.7	4
27	Temperature-responsive properties of poly(4-vinylpyridine) coatings: influence of temperature on the wettability, morphology, and protein adsorption. RSC Advances, 2016, 6, 87469-87477.	3.6	33
28	Precise positioning of cancerous cells on PDMS substrates with gradients of elasticity. Biomedical Microdevices, 2016, 18, 90.	2.8	8
29	Physico-chemical properties of PDMS surfaces suitable as substrates for cell cultures. Applied Surface Science, 2016, 389, 247-254.	6.1	34
30	Effect of substrate elasticity on macroscopic parameters of fish keratocyte migration. Physical Biology, 2016, 13, 054001.	1.8	5
31	Synthesis and Postpolymerization Modification of Thermoresponsive Coatings Based on Pentaerythritol Monomethacrylate: Surface Analysis, Wettability, and Protein Adsorption. Langmuir, 2015, 31, 9675-9683.	3.5	23
32	PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 13-22.	3.1	62
33	Temperature-responsive peptide-mimetic coating based on poly(N-methacryloyl-l-leucine): Properties, protein adsorption and cell growth. Colloids and Surfaces B: Biointerfaces, 2014, 118, 270-279.	5.0	22
34	Humidity and wetting effects in spin ast blends of insulating polymers and conducting polyaniline doped with DBSA. Journal of Applied Polymer Science, 2013, 127, 2354-2361.	2.6	2
35	Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption. Journal of Colloid and Interface Science, 2013, 411, 247-256.	9.4	39
36	Reverse contrast and substructures in protein micro-patterns on 3D polymer surfaces. Colloids and Surfaces B: Biointerfaces, 2012, 90, 144-151.	5.0	3

#	Article	IF	CITATIONS
37	Protein coverage on silicon surfaces modified with amino-organic films: A study by AFM and angle-resolved XPS. Colloids and Surfaces B: Biointerfaces, 2010, 80, 63-71.	5.0	22
38	Dendrites and pillars in spin cast blends of polyaniline or its oligomeric analogue. Synthetic Metals, 2010, 160, 2459-2466.	3.9	16
39	Modification of poly(ethylene terephthalate) surface with attached dextran macromolecules. Polymer International, 2009, 58, 1034-1040.	3.1	8
40	Selective Protein Adsorption on Polymer Patterns Formed by Self-Organization and Soft Lithography. Biomacromolecules, 2009, 10, 2101-2109.	5.4	41
41	Structures in Multicomponent Polymer Films: Their Formation, Observation and Applications in Electronics and Biotechnology. Acta Physica Polonica A, 2009, 115, 435-440.	0.5	10
42	Conductivity of Thin Polymer Films Containing Polyaniline. Molecular Crystals and Liquid Crystals, 2008, 485, 796-803.	0.9	8
43	Breath Figures in Polymer and Polymer Blend Films Spin-Coated in Dry and Humid Ambience. Langmuir, 2008, 24, 3517-3524.	3.5	65
44	Integral Geometry Analysis of Fluorescence Micrographs for Quantitative Relative Comparison of Protein Adsorption onto Polymer Surfaces. Langmuir, 2008, 24, 10253-10258.	3.5	24
45	Pattern Formation in Thin Polymer Films Containing Conducting Polyaniline. Macromolecular Symposia, 2008, 263, 47-52.	0.7	2
46	Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters. Synthetic Metals, 2007, 157, 726-732.	3.9	91
47	Pattern replication in polyaniline–polystyrene thin films. Synthetic Metals, 2007, 157, 935-939.	3.9	14
48	Compositional Mismatch between Chemical Patterns on a Substrate and Polymer Blends Yielding Spin-Cast Films with Subpattern Periodicity. Macromolecules, 2007, 40, 2120-2125.	4.8	14
49	Structure Evolution in Layers of Polymer Blend Nanoparticles. Langmuir, 2007, 23, 7235-7240.	3.5	18
50	Humidity and solvent effects in spin-coated polythiophene–polystyrene blends. Journal of Applied Polymer Science, 2007, 105, 67-79.	2.6	43
51	Pattern guided structure formation in polymer films of asymmetric blends. Surface Science, 2006, 600, 1004-1011.	1.9	11
52	Pattern replication examined with integral geometry approach: application to ion milling of polymer blend films. Thin Solid Films, 2005, 476, 358-365.	1.8	13
53	Binding activity of patterned concanavalin A studied by atomic force microscopy. Journal of Physics Condensed Matter, 2005, 17, S1447-S1458.	1.8	13
54	Friction force microscopy as an alternative method to probe molecular interactions. Journal of Chemical Physics, 2005, 123, 014702.	3.0	13

#	Article	IF	CITATIONS
55	Composition Effects in Polymer Blends Spin-Cast on Patterned Substrates. Macromolecules, 2005, 38, 8486-8493.	4.8	40
56	Influence of humid atmosphere on phase separation in polyaniline–polystyrene thin films. Synthetic Metals, 2005, 155, 516-522.	3.9	22
57	Structures Formed in Spin-Cast Films of Polystyrene Blends with Poly(butyl methacrylate) Isomers. Macromolecules, 2004, 37, 7308-7315.	4.8	38
58	Lamellar structures formed in spin-cast blends of insulating and conducting polymers. Synthetic Metals, 2004, 144, 253-257.	3.9	28
59	Surface Patterns in Solvent-Cast Polymer Blend Films Analyzed with an Integral-Geometry Approach. Macromolecules, 2003, 36, 2419-2427.	4.8	59
60	Substrate-Determined Shape of Free Surface Profiles in Spin-Cast Polymer Blend Films. Macromolecules, 2003, 36, 4060-4067.	4.8	64
61	Substructure formation during pattern transposition from substrate into polymer blend film. Europhysics Letters, 2003, 62, 855-861.	2.0	25
62	AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self-assembled monolayer. Surface Science, 2002, 507-510, 700-706.	1.9	48