Peter J Stang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3500001/publications.pdf

Version: 2024-02-01

421 papers

35,056 citations

4370 86 h-index 181

g-index

457 all docs

457 docs citations

times ranked

457

17300 citing authors

#	Article	IF	Citations
1	Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chemical Reviews, 2000, 100, 853-908.	23.0	3,439
2	Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chemical Reviews, 2013, 113, 734-777.	23.0	2,588
3	Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chemical Reviews, 2011, 111, 6810-6918.	23.0	2,587
4	High-Symmetry Coordination Cages via Self-Assembly. Accounts of Chemical Research, 2002, 35, 972-983.	7.6	1,682
5	Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chemical Reviews, 2015, 115, 7001-7045.	23.0	1,540
6	Self-Assembly, Symmetry, and Molecular Architecture:  Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra. Accounts of Chemical Research, 1997, 30, 502-518.	7.6	1,364
7	Self-Organization in Coordination-Driven Self-Assembly. Accounts of Chemical Research, 2009, 42, 1554-1563.	7.6	670
8	Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature, 1999, 398, 796-799.	13.7	616
9	Highly emissive platinum(II) metallacages. Nature Chemistry, 2015, 7, 342-348.	6.6	597
10	Self-Assembly of Cationic, Tetranuclear, Pt(II) and Pd(II) Macrocyclic Squares. x-ray Crystal Structure of [Pt2+(dppp)(4,4'-bipyridyl).cntdot.2-OSO2CF3]4. Journal of the American Chemical Society, 1995, 117, 6273-6283.	6.6	457
11	Biomedical and Biochemical Applications of Self-Assembled Metallacycles and Metallacages. Accounts of Chemical Research, 2013, 46, 2464-2474.	7.6	438
12	Transition Metal Based Cationic Molecular Boxes. Self-Assembly of Macrocyclic Platinum(II) and Palladium(II) Tetranuclear Complexes. Journal of the American Chemical Society, 1994, 116, 4981-4982.	6. 6	366
13	Unsaturated carbenes. Chemical Reviews, 1978, 78, 383-405.	23.0	344
14	Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications. Accounts of Chemical Research, 2016, 49, 2527-2539.	7.6	334
15	Coordination-driven self-assembly of functionalized supramolecular metallacycles. Chemical Communications, 2008, , 5896.	2.2	318
16	Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. Journal of the American Chemical Society, 2017, 139, 5067-5074.	6.6	301
17	Self-Assembly of Nanoscopic Dodecahedra from 50 Predesigned Components. Journal of the American Chemical Society, 1999, 121, 10434-10435.	6.6	286
18	Biomedically Relevant Self-Assembled Metallacycles and Metallacages. Journal of the American Chemical Society, 2019, 141, 14005-14020.	6.6	283

#	Article	IF	CITATIONS
19	Recent developments in the construction and applications of platinum-based metallacycles and metallacages <i>via</i> coordination. Chemical Society Reviews, 2020, 49, 3889-3919.	18.7	275
20	Molecular Architecture: Coordination as the Motif in the Rational Design and Assembly of Discrete Supramolecular Species—Self-Assembly of Metallacyclic Polygons and Polyhedra. Chemistry - A European Journal, 1998, 4, 19-27.	1.7	270
21	Responsive Supramolecular Polymer Metallogel Constructed by Orthogonal Coordination-Driven Self-Assembly and Host/Guest Interactions. Journal of the American Chemical Society, 2014, 136, 4460-4463.	6.6	265
22	Hierarchical Assemblies of Supramolecular Coordination Complexes. Accounts of Chemical Research, 2018, 51, 2047-2063.	7.6	265
23	A Suite of Tetraphenylethylene-Based Discrete Organoplatinum(II) Metallacycles: Controllable Structure and Stoichiometry, Aggregation-Induced Emission, and Nitroaromatics Sensing. Journal of the American Chemical Society, 2015, 137, 15276-15286.	6.6	260
24	A Facile Approach toward Multicomponent Supramolecular Structures: Selective Self-Assembly via Charge Separation. Journal of the American Chemical Society, 2010, 132, 16873-16882.	6.6	254
25	Fluorescent Metallacage-Core Supramolecular Polymer Gel Formed by Orthogonal Metal Coordination and Host–Guest Interactions. Journal of the American Chemical Society, 2018, 140, 7674-7680.	6.6	242
26	Alkynyl- and Alkenyl (phenyl) iodonium Compounds. New Synthetic Methods (86). Angewandte Chemie International Edition in English, 1992, 31, 274-285.	4.4	222
27	Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15585-15590.	3.3	221
28	Hierarchical Self-Assembly: Well-Defined Supramolecular Nanostructures and Metallohydrogels via Amphiphilic Discrete Organoplatinum(II) Metallacycles. Journal of the American Chemical Society, 2013, 135, 14036-14039.	6.6	216
29	Light-Emitting Superstructures with Anion Effect: Coordination-Driven Self-Assembly of Pure Tetraphenylethylene Metallacycles and Metallacages. Journal of the American Chemical Society, 2016, 138, 4580-4588.	6.6	211
30	Self-Assembly of Porphyrin Arrays via Coordination to Transition Metal Bisphosphine Complexes and the Unique Spectral Properties of the Product Metallacyclic Ensembles. Journal of the American Chemical Society, 1999, 121, 2741-2752.	6.6	203
31	Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. Journal of the American Chemical Society, 2017, 139, 15940-15949.	6.6	203
32	Polyvalent Iodine in Organic Chemistry. Journal of Organic Chemistry, 2003, 68, 2997-3008.	1.7	198
33	A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nature Communications, 2018, 9, 4335.	5.8	197
34	Metallacycle-cored supramolecular assemblies with tunable fluorescence including white-light emission. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3044-3049.	3.3	170
35	Self-Assembled Fluorescent Pt(II) Metallacycles as Artificial Light-Harvesting Systems. Journal of the American Chemical Society, 2019, 141, 14565-14569.	6.6	170
36	Formation of [3]Catenanes from 10 Precursors via Multicomponent Coordination-Driven Self-Assembly of Metallarectangles. Journal of the American Chemical Society, 2013, 135, 2084-2087.	6.6	164

#	Article	IF	Citations
37	Design, Synthesis, and Crystallographic Studies of Neutral Platinum-Based Macrocycles Formed via Self-Assembly. Journal of the American Chemical Society, 2004, 126, 2464-2473.	6.6	162
38	Molecular Architecture via Coordination:Â Self-Assembly of Nanoscale Platinum Containing Molecular Hexagons. Journal of the American Chemical Society, 1997, 119, 4777-4778.	6.6	161
39	Tetraphenylethene-based highly emissive metallacage as a component of theranostic supramolecular nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13720-13725.	3.3	161
40	Coordination-Driven Self-Assembly of Predesigned Supramolecular Triangles. Journal of the American Chemical Society, 2003, 125, 5193-5198.	6.6	160
41	A New Family of Multiferrocene Complexes with Enhanced Control of Structure and Stoichiometry via Coordination-Driven Self-Assembly and Their Electrochemistry. Journal of the American Chemical Society, 2008, 130, 839-841.	6.6	160
42	Design and Study of Synthetic Chiral Nanoscopic Assemblies. Preparation and Characterization of Optically Active Hybrid, Iodoniumâ^Transition-Metal and All-Transition-Metal Macrocyclic Molecular Squares. Journal of the American Chemical Society, 1996, 118, 8221-8230.	6.6	159
43	Molecular Architecture via Coordination:  Self-Assembly, Characterization, and Hostâ'Guest Chemistry of Mixed, Neutral-Charged, Ptâ'Pt and Ptâ'Pd Macrocyclic Tetranuclear Complexes. X-ray Crystal Structure of Cyclobis[[cis-Pt(dppp)(4-ethynylpyridine)2][cis-Pd2+(PEt3)22-OSO2CF3]]. Journal of the American Chemical Society. 1997. 119. 2524-2533.	6.6	156
44	Synthesis and Characterization of Organoplatinum Dendrimers with 1,3,5-Triethynylbenzene Building Blocks. Organometallics, 1998, 17, 3981-3987.	1.1	153
45	Metallosupramolecular Tetragonal Prisms via Multicomponent Coordination-Driven Template-Free Self-Assembly. Journal of the American Chemical Society, 2010, 132, 6282-6283.	6.6	153
46	Heterometallic Ru–Pt metallacycle for two-photon photodynamic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5664-5669.	3.3	145
47	Directed Self-Assembly of Chiral, Optically Active Macrocyclic Tetranuclear Molecular Squares. Angewandte Chemie International Edition in English, 1996, 35, 732-736. Theoretical Insights into Hydrogen Bonding and Its Influence on the Structural and Spectral	4.4	143
48	Properties of Aquo Palladium(II) Complexes: <i>ci>cis</i> -[(dppp)Pd(H ₂ O) ₂] ²⁺ , <i>ci>cis</i> -[(dppp)Pd(H ₂ O)(OSO ₂ CF ₃)] ⁺ (OSO ₂ CF ₃)]	C F ∜sub>3	√143b>) <sur< td=""></sur<>
49	Melanin-dota€ mediated delivery of metallacycle for NiR-II/photoacoustic dual-modal imaging-guided 3) <sup chemo-photothermal synergistic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16729-16735.</sup 	3.3	> ₂
50	Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor diagnosis and image-guided therapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1968-1973.	3.3	140
51	Combining Ferrocenes and Molecular Squares:  Self-Assembly of Heterobimetallic Macrocyclic Squares Incorporating Mixed Transition Metal Systems and a Main Group Element. Single-Crystal X-ray Structure of [Pt(dppf)(H2O)2][OTf]2. Organometallics, 1996, 15, 904-908.	1.1	137
52	Soft Materials with Diverse Suprastructures via the Self-Assembly of Metal–Organic Complexes. Accounts of Chemical Research, 2019, 52, 802-817.	7.6	136
53	Hexanuclear self-assembled arene-ruthenium nano-prismatic cages: potential anticancer agents. Chemical Communications, 2011, 47, 5184.	2.2	134
54	Self-Assembly of Triangular and Hexagonal Molecular Necklaces. Journal of the American Chemical Society, 2014, 136, 5908-5911.	6.6	134

#	Article	IF	CITATIONS
55	Engineering Functionalization in a Supramolecular Polymer: Hierarchical Self-Organization of Triply Orthogonal Non-covalent Interactions on a Supramolecular Coordination Complex Platform. Journal of the American Chemical Society, 2016, 138, 806-809.	6.6	134
56	Dendronized Organoplatinum(II) Metallacyclic Polymers Constructed by Hierarchical Coordination-Driven Self-Assembly and Hydrogen-Bonding Interfaces. Journal of the American Chemical Society, 2013, 135, 16813-16816.	6.6	129
57	Photoinduced transformations of stiff-stilbene-based discrete metallacycles to metallosupramolecular polymers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8717-8722.	3.3	127
58	Coordination-Driven Self-Assembled Metallacycles Incorporating Pyrene: Fluorescence Mutability, Tunability, and Aromatic Amine Sensing. Journal of the American Chemical Society, 2019, 141, 1757-1765.	6.6	126
59	Formation of Planar Chiral Platinum Triangles via Pillar[5]arene for Circularly Polarized Luminescence. Journal of the American Chemical Society, 2020, 142, 17340-17345.	6.6	125
60	Formation of Halogen Bond-Based 2D Supramolecular Assemblies by Electric Manipulation. Journal of the American Chemical Society, 2015, 137, 6128-6131.	6.6	117
61	Single- and Double-Stranded Chains Assembled via Concomitant Metal Coordination and Hydrogen Bonding. Organometallics, 2001, 20, 1956-1959.	1.1	113
62	Coordination-Driven Self-Assembly of Cavity-Cored Multiple Crown Ether Derivatives and Poly[2]pseudorotaxanes. Journal of the American Chemical Society, 2008, 130, 5320-5334.	6.6	113
63	Designed Post-Self-Assembly Structural and Functional Modifications of a Truncated Tetrahedron. Journal of the American Chemical Society, 2011, 133, 17045-17055.	6.6	113
64	A self-assembled Ru–Pt metallacage as a lysosome-targeting photosensitizer for 2-photon photodynamic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20296-20302.	3.3	113
65	Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11100-11105.	3.3	112
66	Self-Assembly, Chiroptical Properties, and Hostâ^'Guest Chemistry of Chiral Ptâ^'Pt and Ptâ^'Pd Tetranuclear Macrocycles. Circular Dichroism Studies on Neutral Guest Inclusion Phenomena. Journal of the American Chemical Society, 1998, 120, 9827-9837.	6.6	111
67	Preparation and Solid-State Properties of Self-Assembled Dinuclear Platinum(II) and Palladium(II) Rhomboids from Carbon and Silicon Tectons. Organometallics, 1999, 18, 4817-4824.	1.1	111
68	Hostânguest complexation-mediated codelivery of anticancer drug and photosensitizer for cancer photochemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6618-6623.	3.3	111
69	Nanoscale Tectonics:Â Self-Assembly, Characterization, and Chemistry of a Novel Class of Organoplatinum Square Macrocycles. Journal of the American Chemical Society, 1997, 119, 11611-11619.	6.6	110
70	Construction of Multifunctional Cuboctahedra via Coordination-Driven Self-Assembly. Journal of the American Chemical Society, 2009, 131, 6695-6697.	6.6	104
71	Temperature-Responsive Fluorescent Organoplatinum(II) Metallacycles. Journal of the American Chemical Society, 2018, 140, 7723-7729.	6.6	104
72	Molecular Architecture via Coordination:Â Self-Assembly of Nanoscale Hexagonal Metallodendrimers with Designed Building Blocks. Journal of the American Chemical Society, 2006, 128, 10014-10015.	6.6	103

#	Article	IF	Citations
73	<i>Endo</i> - and <i>Exo</i> -Functionalized Tetraphenylethylene M ₁₂ L ₂₄ Nanospheres: Fluorescence Emission inside a Confined Space. Journal of the American Chemical Society, 2019, 141, 9673-9679.	6.6	103
74	Dynamic Equilibrium of a Supramolecular Dimeric Rhomboid and Trimeric Hexagon and Determination of Its Thermodynamic Constants. Journal of the American Chemical Society, 2003, 125, 12309-12317.	6.6	102
75	Self-Assembly of Flexible Supramolecular Metallacyclic Ensembles:Â Structures and Adsorption Properties of Their Nanoporous Crystalline Frameworks. Journal of the American Chemical Society, 2004, 126, 10645-10656.	6.6	101
76	In vivo anticancer activity of rhomboidal Pt(II) metallacycles. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18448-18453.	3.3	101
77	A Discrete Amphiphilic Organoplatinum(II) Metallacycle with Tunable Lower Critical Solution Temperature Behavior. Journal of the American Chemical Society, 2014, 136, 15497-15500.	6.6	101
78	Formation of a Supramolecular Polymeric Adhesive via Water–Participant Hydrogen Bond Formation. Journal of the American Chemical Society, 2019, 141, 8058-8063.	6.6	101
79	Coordination-Driven Face-Directed Self-Assembly of Trigonal Prisms. Face-Based Conformational Chirality. Journal of the American Chemical Society, 2008, 130, 7620-7628.	6.6	100
80	Preparation and solvolysis of vinyl trifluoromethanesulfonates. I. Evidence for simple alkylvinyl cation intermediates. Journal of the American Chemical Society, 1969, 91, 4600-4601.	6.6	98
81	Vinyl triflate chemistry: unsaturated cations and carbenes. Accounts of Chemical Research, 1978, 11, 107-114.	7.6	98
82	Hybrid, Iodonium-Transition Metal, Cationic Tetranuclear Macrocyclic Squares. Journal of the American Chemical Society, 1995, 117, 1667-1668.	6.6	97
83	Self-Assembly of Chiral Metallacycles and Metallacages from a Directionally Adaptable BINOL-Derived Donor. Journal of the American Chemical Society, 2015, 137, 11896-11899.	6.6	94
84	Hierarchical Self-Assembly of Responsive Organoplatinum(II) Metallacycle–TMV Complexes with Turn-On Fluorescence. Journal of the American Chemical Society, 2016, 138, 12033-12036.	6.6	91
85	Alanine-Based Chiral Metallogels via Supramolecular Coordination Complex Platforms: Metallogelation Induced Chirality Transfer. Journal of the American Chemical Society, 2018, 140, 3257-3263.	6.6	91
86	Preparation, Characterization, and X-ray Crystal Structures of Helical and Syndiotactic Zinc-Based Coordination Polymers. Inorganic Chemistry, 2000, 39, 2547-2557.	1.9	90
87	Single-step preparation of rigid-rod, cationic, bimetallic, .sigmadiyne complexes: L5M+C.tplbond.C(C6H4)C.tplbond.CM+L5.cntdot.2TfO- (M = iridium, rhodium). Journal of the American Chemical Society, 1992, 114, 4411-4412.	6.6	89
88	Orthogonal self-assembly of an organoplatinum(II) metallacycle and cucurbit[8]uril that delivers curcumin to cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8087-8092.	3. 3	88
89	A new method for the synthesis of cyclopentenones via the tandem Michael addition-carbene insertion reaction of .betaketoethynyl(phenyl)iodonium salts. Journal of the American Chemical Society, 1994, 116, 93-98.	6.6	87
90	X-ray Diffraction and DOSY NMR Characterization of Self-Assembled Supramolecular Metallocyclic Species in Solution. Journal of the American Chemical Society, 2005, 127, 10731-10738.	6.6	87

#	Article	IF	Citations
91	Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and $Au(111)$ surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 971-974.	3.3	86
92	Size Selective Self-Sorting in Coordination-Driven Self-Assembly of Finite Ensembles. Inorganic Chemistry, 2008, 47, 4706-4711.	1.9	85
93	Dualâ€Emissive Platinum(II) Metallacage with a Sensitive Oxygen Response for Imaging of Hypoxia and Imagingâ€Guided Chemotherapy. Angewandte Chemie - International Edition, 2020, 59, 20208-20214.	7.2	85
94	Stereoselective formation of conjugated enynes via coupling of alkynyliodonium tosylates and vinylcopper reagents. Journal of the American Chemical Society, 1987, 109, 7561-7563.	6.6	84
95	Facile Self-Assembly of Predesigned Neutral 2D Pt-Macrocycles via a New Class of Rigid Oxygen Donor Linkers. Journal of the American Chemical Society, 2003, 125, 13950-13951.	6.6	84
96	Immobilizing Tetraphenylethylene into Fused Metallacycles: Shape Effects on Fluorescence Emission. Journal of the American Chemical Society, 2016, 138, 13131-13134.	6.6	80
97	Self-Healing Heterometallic Supramolecular Polymers Constructed by Hierarchical Assembly of Triply Orthogonal Interactions with Tunable Photophysical Properties. Journal of the American Chemical Society, 2019, 141, 17909-17917.	6.6	80
98	Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23437-23443.	3.3	78
99	Preparation, via Double Oxidative Addition, and Characterization of Bimetallic Platinum and Palladium Complexes:Â Unique Building Blocks for Supramolecular Macrocycles. 13C NMR Analysis of the Nature of the Palladiumâr' Carbon Bondâ€. Organometallics, 1997, 16, 1897-1905.	1.1	77
100	Selfâ€Assembled Arene–Rutheniumâ€Based Rectangles for the Selective Sensing of Multiâ€Carboxylate Anions. Chemistry - A European Journal, 2011, 17, 7837-7844.	1.7	77
101	Anthracene–Triphenylamine-Based Platinum(II) Metallacages as Synthetic Light-Harvesting Assembly. Journal of the American Chemical Society, 2021, 143, 2908-2919.	6.6	76
102	Coordination-Driven Assembly of Molecular Rectangles via an Organometallic "Clip― Organic Letters, 2000, 2, 3727-3729.	2.4	73
103	Designed Conformation and Fluorescence Properties of Self-Assembled Phenazine-Cored Platinum(II) Metallacycles. Journal of the American Chemical Society, 2019, 141, 5535-5543.	6.6	73
104	Alkynyl sulfonate esters. Preparation and characterization of acetylenic tosylates, RC.tplbond.COTs. Journal of the American Chemical Society, 1985, 107, 1452-1453.	6.6	70
105	Photophysical and Computational Investigations of Bis(phosphine) Organoplatinum(II) Metallacycles. Journal of the American Chemical Society, 2012, 134, 10607-10620.	6.6	70
106	Tunable Visible Light Emission of Self-Assembled Rhomboidal Metallacycles. Journal of the American Chemical Society, 2013, 135, 13676-13679.	6.6	70
107	Capture and Release of Singlet Oxygen in Coordination-Driven Self-Assembled Organoplatinum(II) Metallacycles. Journal of the American Chemical Society, 2020, 142, 2601-2608.	6.6	69
108	Photophysical Properties of Self-Assembled Multinuclear Platinum Metallacycles with Different Conformational Geometries. Journal of the American Chemical Society, 2013, 135, 6694-6702.	6.6	67

#	Article	IF	Citations
109	Ethynyl(phenyl)iodonium Triflate,[HC CIPh][OSO2CF3]: Preparation, Spectral Properties, Mechanism of Formation and X-Ray Molecular Structure. Angewandte Chemie International Edition in English, 1990, 29, 287-288.	4.4	66
110	A general approach to aryl(cyano)iodonium triflates - versatile iodonium transfer reagents. Tetrahedron Letters, 1993, 34, 6853-6856.	0.7	66
111	From Solvolysis to Self-Assembly. Journal of Organic Chemistry, 2009, 74, 2-20.	1.7	66
112	Metallacycle-Cored Supramolecular Polymers: Fluorescence Tuning by Variation of Substituents. Journal of the American Chemical Society, 2018, 140, 16920-16924.	6.6	66
113	Abiological Self-Assembly via Coordination: Formation of 2D Metallacycles and 3D Metallacages with Well-Defined Shapes and Sizes and Their Chemistry. Journal of the American Chemical Society, 2012, 134, 11829-11830.	6.6	64
114	Self-Assembled Perylene Bisimide-Cored Trigonal Prism as an Electron-Deficient Host for C ₆₀ and C ₇₀ Driven by "Like Dissolves Like― Journal of the American Chemical Society, 2020, 142, 15950-15960.	6.6	64
115	Hierarchical Selfâ€assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angewandte Chemie - International Edition, 2021, 60, 5429-5435.	7.2	64
116	Bis[phenyl[(perfluoroalkanesulfonyl)oxy]iodo]acetylene, PhI+C.tplbond.CI+Ph.cntdot.2RFSO3-, and 1,4bis[phenyl[(perfluoroalkanesulfonyl)oxy]iodo]-1,3-butadiyne, PhI+C.tplbond.C-C.tplbond.CI+Ph.cntdot.2RFSO3 Journal of the American Chemical Society, 1990, 112, 6437-6438.	6.6	63
117	Self-Assembly of Metallacages into Multidimensional Suprastructures with Tunable Emissions. Journal of the American Chemical Society, 2018, 140, 12819-12828.	6.6	63
118	Behavior of bent vinyl cations generated by solvolysis of cyclic trifluoromethanesulfonates. Journal of the American Chemical Society, 1971, 93, 1513-1516.	6.6	61
119	On attempts at solvolytic generation of aryl cations. Journal of Organic Chemistry, 1976, 41, 4099-4103.	1.7	61
120	Hierarchical Self-Assembly of a Pyrene-Based Discrete Organoplatinum(II) Double-Metallacycle with Triflate Anions via Hydrogen Bonding and Its Tunable Fluorescence Emission. Journal of the American Chemical Society, 2020, 142, 13689-13694.	6.6	61
121	Preparation, molecular structure, and Diels-Alder cycloaddition chemistry of .betafunctionalized alkynyl(phenyl)iodonium salts. Journal of the American Chemical Society, 1993, 115, 2590-2597.	6.6	60
122	Design of a Metallacycleâ€Based Supramolecular Photosensitizer for In Vivo Imageâ€Guided Photodynamic Inactivation of Bacteria. Angewandte Chemie - International Edition, 2022, 61, e202110048.	7.2	59
123	Stoichiometric Control of Multiple Different Tectons in Coordination-Driven Self-Assembly: Preparation of Fused Metallacyclic Polygons. Journal of the American Chemical Society, 2009, 131, 12028-12029.	6.6	58
124	Spontaneous Formation of a Cross-Linked Supramolecular Polymer Both in the Solid State and in Solution, Driven by Platinum(II) Metallacycle-Based Host–Guest Interactions. Journal of the American Chemical Society, 2019, 141, 6494-6498.	6.6	58
125	Synthesis of Heterocycles and Carbocycles by Electrophilic Cyclization of Alkynes., 2005,, 51-99.		57
126	Preparation of functionalized alkynyl(phenyl)iodonium salts via a novel iodonium transfer process between alkynylstannanes and PhI+CN -OTf. Journal of the American Chemical Society, 1991, 113, 5870-5871.	6.6	56

#	Article	IF	Citations
127	Electrophilic additions of iodosylbenzene activated by trifluoromethanesulfonic acid, [PhIO-TfOH], to alkynes. Tetrahedron, 1992, 48, 7149-7156.	1.0	56
128	Fast Atom Bombardment Mass Spectrometry for Characterizing Cationic Chelated Species. Angewandte Chemie International Edition in English, 1996, 35, 2524-2529.	4.4	56
129	Rational Design of Chiral Nanoscale Adamantanoids. Organic Letters, 2000, 2, 1255-1257.	2.4	56
130	Self-Recognition in the Coordination-Driven Self-Assembly of Three-Dimensional M3L2 Polyhedra. Organic Letters, 2007, 9, 1561-1564.	2.4	56
131	Photophysical Properties of a Post-Self-Assembly Host/Guest Coordination Cage: Visible Light Driven Core-to-Cage Charge Transfer. Journal of Physical Chemistry Letters, 2015, 6, 1942-1947.	2.1	56
132	Drum-like Metallacages with Size-Dependent Fluorescence: Exploring the Photophysics of Tetraphenylethylene under Locked Conformations. Journal of the American Chemical Society, 2021, 143, 9215-9221.	6.6	56
133	Palladium-Catalyzed Arylation of Enynes and Electron-Deficient Alkynes Using Diaryliodonium Salts. Organic Letters, 2001, 3, 859-860.	2.4	55
134	Chiral Metallacycles as Catalysts for Asymmetric Conjugate Addition of Styrylboronic Acids to \hat{l}_{\pm},\hat{l}^2 -Enones. Journal of the American Chemical Society, 2020, 142, 10244-10249.	6.6	54
135	Coordination-Assisted Reversible Photoswitching of Spiropyran-Based Platinum Macrocycles. Inorganic Chemistry, 2020, 59, 2083-2091.	1.9	53
136	Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated Cuboctahedra. Journal of the American Chemical Society, 2021, 143, 5826-5835.	6.6	53
137	Molecular Architecture via Coordination:  Self-Assembly of Pseudohexagonal A23X23-Macrocycles. Organic Letters, 1999, 1, 1921-1923.	2.4	52
138	Alkynylation of organometallic systems. A new, simple method for the introduction of terminal acetylides: formation of rhodium(III) and iridium(III) .sigmaacetylide complexes. Organometallics, 1990, 9, 3191-3193.	1.1	51
139	Alkynyl carboxylate, phosphate, and sulfonate esters. Accounts of Chemical Research, 1991, 24, 304-310.	7.6	51
140	Coordination-Driven Self-Assembly of 2D-Metallamacrocycles Using a New Carbazole-Based Dipyridyl Donor: Synthesis, Characterization, and C ₆₀ Binding Study. Inorganic Chemistry, 2012, 51, 4817-4823.	1.9	51
141	Fe–Pt Twisted Heterometallic Bicyclic Supramolecules via Multicomponent Self-Assembly. Journal of the American Chemical Society, 2017, 139, 2553-2556.	6.6	51
142	Metallacycles, metallacages, and their aggregate/optical behavior. Aggregate, 2021, 2, e94.	5.2	51
143	Synthesis and photophysical studies of self-assembled multicomponent supramolecular coordination prisms bearing porphyrin faces. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9390-9395.	3.3	50
144	Self-Assembly of Porphyrin-Containing Metalla-Assemblies and Cancer Photodynamic Therapy. Inorganic Chemistry, 2020, 59, 7380-7388.	1.9	48

#	Article	IF	CITATIONS
145	Divergent and Stereoselective Synthesis of Tetraarylethylenes from Vinylboronates. Angewandte Chemie - International Edition, 2020, 59, 20090-20098.	7.2	47
146	Acetylenic esters. Preparation and characterization of hitherto unknown alkynyl carboxylate, RC.tplbond.COCOR1, and alkynyl phosphate, RC.tplbond.COPO(OR1)2, esters. Journal of the American Chemical Society, 1986, 108, 7832-7834.	6.6	46
147	Self-Assembly of [3]Catenanes and a [4]Molecular Necklace Based on a Cryptand/Paraquat Recognition Motif. Organic Letters, 2015, 17, 2804-2807.	2.4	46
148	Supramolecular Copolymer Constructed by Hierarchical Self-Assembly of Orthogonal Host–Guest, H-Bonding, and Coordination Interactions. ACS Macro Letters, 2016, 5, 671-675.	2.3	46
149	BODIPY based metal-organic macrocycles and frameworks: Recent therapeutic developments. Coordination Chemistry Reviews, 2022, 452, 214308.	9.5	46
150	Near-Infrared Emissive Discrete Platinum(II) Metallacycles: Synthesis and Application in Ammonia Detection. Organic Letters, 2017, 19, 5728-5731.	2.4	45
151	Light-emitting self-assembled metallacages. National Science Review, 2021, 8, nwab045.	4.6	45
152	Metal-Directed Formation of Three-Dimensional M3L2 Trigonal-Bipyramidal Cages. Organic Letters, 2001, 3, 3141-3143.	2.4	44
153	Diamondoid Supramolecular Coordination Frameworks from Discrete Adamantanoid Platinum(II) Cages. Journal of the American Chemical Society, 2018, 140, 7005-7011.	6.6	44
154	Single-molecule level control of host-guest interactions in metallocycle-C60 complexes. Nature Communications, 2019, 10, 4599.	5.8	44
155	Pillar[5]arene-Containing Metallacycles and Host–Guest Interaction Caused Aggregation-Induced Emission Enhancement Platforms. Journal of the American Chemical Society, 2020, 142, 16930-16934.	6.6	44
156	Construction of Functionalized Metallosupramolecular Tetragonal Prisms via Multicomponent Coordination-Driven Self-Assembly. Inorganic Chemistry, 2011, 50, 6107-6113.	1.9	43
157	Preparation and chemistry of vinyl triflates. 16. Mechanism of alkylation of aromatic substrates. Journal of the American Chemical Society, 1978, 100, 1520-1525.	6.6	42
158	Phosphorus compounds. Part 68. Tetraphosphacubane chemistry: probing phosphorus reactivity by protonation, alkylation, and alkynylation. Formation of novel phosphonium di- and monocations in superacid media and monocations with super electrophiles. Journal of Organic Chemistry, 1993, 58, 4105-4109.	1.7	42
159	Selfâ€Assembled Supramolecular Heteroâ€Bimetallacycles for Anticancer Potency by Intracellular Release. Chemistry - A European Journal, 2014, 20, 14410-14420.	1.7	42
160	Pyridine Ligand Rotation in Self-Assembled Trigonal Prisms. Evidence for Intracage Solvent Vapor Bubbles. Journal of the American Chemical Society, 2008, 130, 7629-7638.	6.6	41
161	Assembly of Metallacages into Soft Suprastructures with Dimensions of up to Micrometers and the Formation of Composite Materials. Journal of the American Chemical Society, 2018, 140, 17297-17307.	6.6	40
162	Challenges and Opportunities in Designing Perovskite Nanocrystal Heterostructures. ACS Energy Letters, 2020, 5, 2253-2255.	8.8	39

#	Article	IF	Citations
163	Self-Assembly of Porphyrin-Based Metallacages into Octahedra. Journal of the American Chemical Society, 2020, 142, 17903-17907.	6.6	37
164	Preparation of bis(heteroaryl)iodonium salts <i>via</i> an iodonium transfer reaction between di(cyano)iodonium triflate and organostannes. Journal of Heterocyclic Chemistry, 1992, 29, 815-818.	1.4	36
165	Vinyl and Allenyl Cations. Progress in Physical Organic Chemistry, 2007, , 205-325.	1.2	36
166	Anticancer Activity and Autophagy Involvement of Self-Assembled Areneâ€"Ruthenium Metallacycles. Organometallics, 2015, 34, 4507-4514.	1.1	36
167	Polymeric Nanoparticles Integrated from Discrete Organoplatinum(II) Metallacycle by Stepwise Post-assembly Polymerization for Synergistic Cancer Therapy. Chemistry of Materials, 2020, 32, 4564-4573.	3.2	34
168	Emissive Platinum(II) Macrocycles as Tunable Cascade Energy Transfer Scaffolds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
169	Bis(phenyliodonium) diyne triflates PhIC.tplbond.C(p-C6H4)nC.tplbond.CIPh.cntdot.20Tf and PhIC.tplbond.C(CH2)nC.tplbond.CIPh.cntdot.20Tf: preparation, characterization, and reaction with triphenylphosphine. Journal of Organic Chemistry, 1992, 57, 1861-1864.	1.7	33
170	Mechanism-Based Inactivation of Phosphotriesterase by Reaction of a Critical Histidine with a Ketene Intermediate. Biochemistry, 1995, 34, 743-749.	1.2	33
171	Atomically Precise Prediction of 2D Selfâ€Assembly of Weakly Bonded Nanostructures: STM Insight into Concentrationâ€Dependent Architectures. Small, 2016, 12, 343-350.	5.2	33
172	Temperature- and Mechanical-Force-Responsive Self-Assembled Rhomboidal Metallacycle. Organometallics, 2019, 38, 4244-4249.	1.1	33
173	Understanding the Effects of Coordination and Self-Assembly on an Emissive Phenothiazine. Journal of the American Chemical Society, 2019, 141, 3717-3722.	6.6	33
174	Self-assembled ruthenium (II) metallacycles and metallacages with imidazole-based ligands and their in vitro anticancer activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4090-4098.	3.3	33
175	\hat{l}^2 -Cyclodextrin modified Pt(II) metallacycle-based supramolecular hyperbranched polymer assemblies for DOX delivery to liver cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30942-30948.	3.3	32
176	Spontaneous Supramolecular Polymerization Driven by Discrete Platinum Metallacycle-Based Host–Guest Complexation. Journal of the American Chemical Society, 2019, 141, 11837-11841.	6.6	31
177	Doubleâ€Layered Supramolecular Prisms Selfâ€Assembled by Geometrically Nonâ€equivalent Tetratopic Subunits. Angewandte Chemie - International Edition, 2021, 60, 1298-1305.	7.2	31
178	Self-assembled NIR-II Fluorophores with Ultralong Blood Circulation for Cancer Imaging and Image-guided Surgery. Journal of Medicinal Chemistry, 2022, 65, 2078-2090.	2.9	30
179	Phenylthiol-BODIPY-based supramolecular metallacycles for synergistic tumor chemo-photodynamic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	29
180	Mechanism-based inactivation of a bacterial phosphotriesterase by an alkynyl phosphate ester. Journal of the American Chemical Society, 1991, 113, 8560-8561.	6.6	28

#	Article	IF	Citations
181	Ethinyl(phenyl)iodoniumâ€triflat, [HC2CIPh]â€{OSO ₂ CF ₃] – Darstellung, spektroskopische Eigenschaften, Bildungsmechanismus und Röntgenstrukturanalyse. Angewandte Chemie, 1990, 102, 307-308.	1.6	27
182	Preparation of Cyclic and Acyclic Vinyl Trifluoromethanesulfonates. Angewandte Chemie International Edition in English, 1970, 9, 521-522.	4.4	26
183	Preparation and molecular structure determination of dialkynyliodonium salts: (RC.tplbond.C)2I+-OTf. Journal of the American Chemical Society, 1991, 113, 8997-8998.	6.6	26
184	Photoreversible [2] Catenane via the Host–Guest Interactions between a Palladium Metallacycle and β-Cyclodextrin. Inorganic Chemistry, 2015, 54, 11807-11812.	1.9	26
185	Platinum(II)-Based Convex Trigonal-Prismatic Cages via Coordination-Driven Self-Assembly and C ₆₀ Encapsulation. Inorganic Chemistry, 2017, 56, 12498-12504.	1.9	26
186	Synthesis of Ethenyl(phenyl)iodonium Triflate, [H2CCHIPh] [OSO2CF3], and Its Application as a Parent Vinyl Cation Equivalent. Angewandte Chemie International Edition in English, 1991, 30, 1469-1470.	4.4	24
187	Ruthenium–Cobalt Bimetallic Supramolecular Cages via a Less Symmetric Tetrapyridyl Metalloligand and the Effect of Spacer Units. Journal of the American Chemical Society, 2015, 137, 13018-13023.	6.6	24
188	Supramolecular chemistry: Self-assembly of titanium based molecular squares. Research on Chemical Intermediates, 1996, 22, 659-665.	1.3	23
189	Regiochemistry of Dielsâ^'Alder Reactions of Diverse β-Functionalized Alkynyliodonium Salts with Unsymmetrical Dienes. Journal of Organic Chemistry, 1997, 62, 5959-5965.	1.7	23
190	Optical Sensing of Small Hydroxyl-Containing Molecules in New Crystalline Lamellar Arrays of Co(II) and N-(4-Pyridyl) benzamide. Chemistry of Materials, 2003, 15, 372-374.	3.2	23
191	Addition of Terminal Acetylides to CO and CN Electrophiles. , 2005, , 101-138.		23
192	Macrocycles Based on Phenylacetylene Scaffolding. , 2005, , 303-385.		23
193	Preparation and solvolysis of vinyl triflates. VII. Mechanism of rearrangement across the double bond in vinyl cations generated by solvolysis. Evidence for a vinylidene phenonium ion. Journal of the American Chemical Society, 1973, 95, 2683-2686.	6.6	22
194	Fast atom bombardment mass spectrometry of non-volatile organometallic compounds. Rhodium, iridium and platinum complexes containing a cumulene ligand. Organic Mass Spectrometry, 1984, 19, 107-112.	1.3	21
195	A simple high-yield preparation of alkynylphosphonium triflates. Journal of Organic Chemistry, 1992, 57, 4305-4306.	1.7	21
196	Reactions of bicycloalkenyldiiodonium salts with nucleophiles. Tetrahedron Letters, 1992, 33, 6759-6762.	0.7	21
197	A cyclic bis[2]catenane metallacage. Nature Communications, 2020, 11, 2727.	5.8	21
198	1-tert-Butylvinyl Trifluoromethanesulfonate: Solvolysis and Rearrangementvia a Vinyl Cation. Angewandte Chemie International Edition in English, 1970, 9, 302-303.	4.4	20

#	Article	IF	CITATIONS
199	Vinyl cations. 12. Mechanism of reaction of cis- and trans-3-phenyl-2-buten-2-yl triflates. Evidence for vinylidene phenonium ions. Journal of the American Chemical Society, 1977, 99, 2602-2610.	6.6	19
200	Selective Formation of Heterometallic Ru–Ag Supramolecules via Stoichiometric Control of Multiple Different Tectons. Journal of the American Chemical Society, 2015, 137, 5863-5866.	6.6	19
201	Self-assembly of metal-ion-responsive supramolecular coordination complexes and their photophysical properties. Dalton Transactions, 2017, 46, 3120-3124.	1.6	19
202	1â€ŧert.â€Butylâ€vinylâ€ŧrifluormethansulfonat: Solvolyse und Umlagerung Ã⅓ber ein Vinylkation. Angewandte Chemie, 1970, 82, 323-324.	1.6	18
203	Selfâ€Assembly of a Triangleâ€Shaped, Hexaplatinumâ€Incorporated, Supramolecular Amphiphile in Solution and at Interfaces. Chemistry - A European Journal, 2009, 15, 8566-8577.	1.7	18
204	Supramolecular Pt(II) and Ru(II) Trigonal Prismatic Cages Constructed with a Tris(pyridyl)borane Donor. Inorganic Chemistry, 2018, 57, 11696-11703.	1.9	17
205	Metal–Organic Pt(II) Hexagonal-Prism Macrocycles and Their Photophysical Properties. Inorganic Chemistry, 2019, 58, 13376-13381.	1.9	17
206	Photophysical Properties of Endohedral Amine-Functionalized Bis(phosphine) Pt(II) Complexes as Models for Emissive Metallacycles. Inorganic Chemistry, 2013, 52, 9254-9265.	1.9	16
207	Self-Healing Metallacycle-Cored Supramolecular Polymers Based on a Metal–Salen Complex Constructed by Orthogonal Metal Coordination and Host–Guest Interaction with Amino Acid Sensing. ACS Macro Letters, 2021, 10, 873-879.	2.3	16
208	The interaction of alkynyl carboxylates with serine enzymes a potent new class of serine enzyme inhibitors. FEBS Letters, 1989, 247, 217-220.	1.3	15
209	Saccharide-Functionalized Organoplatinum(II) Metallacycles. Organometallics, 2014, 33, 7019-7022.	1.1	15
210	Topological Characterization of Coordination-Driven Self-assembly Complexes: Applications of Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 1654-1662.	1.2	15
211	Generation and Fate of 1â€Dewarâ€pyridinâ€3â€olates and â€2â€olates. Synthesis of 1â€Dewarâ€pyridinâ€3â€o Berichte, 1991, 124, 1661-1665.	nes. Chem 0.2	nische 14
212	Transition Metal Acetylides., 2005,, 139-171.		14
213	Deuterium isotope effects in the solvolytic reactivity of simple alkylvinyl trifluoromethanesulphonates. Journal of the Chemical Society Perkin Transactions II, 1974, , 843.	0.9	13
214	1?5,3?5-Diphospholium ions. Heteroatom Chemistry, 1991, 2, 569-573.	0.4	13
215	FLUORINATING PROPERTIES OF PhTeF ₅ AND PhSeF ₅ TOWARDS C[dbnd]C BOND. Phosphorus, Sulfur and Silicon and the Related Elements, 1995, 102, 283-286.	0.8	13
216	Alkynyliodonium Salts: Electrophilic Acetylene Equivalents. , 0, , 67-98.		13

#	Article	IF	Citations
217	Hierarchical Self-Assembly of a Water-Soluble Organoplatinum(II) Metallacycle into Well-Defined Nanostructures. Organic Letters, 2018, 20, 7020-7023.	2.4	13
218	Tetra-, Hexa-, Dodeca-Nuclear Ir Supramolecules via Bridge-Driven Self-Assembly of Tetrazolyl Ligands. Inorganic Chemistry, 2018, 57, 8054-8057.	1.9	13
219	Self-Assembled Amphiphilic Janus Double Metallacycle. Inorganic Chemistry, 2019, 58, 7141-7145.	1.9	13
220	Rational Design and Bulk Synthesis of Water-Containing Supramolecular Polymers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38700-38707.	4.0	13
221	Confronting Racism in Chemistry Journals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28925-28927.	4.0	13
222	Hierarchical Selfâ€assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angewandte Chemie, 2021, 133, 5489-5495.	1.6	13
223	Small and Strained Ring Compounds via Unsaturated Carbenes. Israel Journal of Chemistry, 1981, 21, 119-127.	1.0	12
224	Fast atom bombardment mass spectral observations on new cationic vinyl organoplatinum and related complexes. Organic Mass Spectrometry, 1987, 22, 642-643.	1.3	12
225	2-Hydroperfluoropropyl azide?a versatile reagent for the oxidative fluorination of organic compounds of trivalent phosphorus. Heteroatom Chemistry, 1993, 4, 579-585.	0.4	12
226	One-dimensional coordination polymers based on first-row transition metals: A solid-state study of weak backbone interactions. Israel Journal of Chemistry, 2001, 41, 149-162.	1.0	12
227	Theoretical Studies on Acetylenic Scaffolds. , 2005, , 1-50.		12
228	Carbon-Rich Compounds: Acetylene-Based Carbon Allotropes. , 2005, , 387-426.		12
229	Coordination-Driven Self-Assembly of Fullerene-Functionalized Pt(II) Metallacycles. Organometallics, 2015, 34, 4813-4815.	1.1	12
230	Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages. Scientific Reports, 2016, 6, 29476.	1.6	12
231	Unique Ruthenium Bimetallic Supramolecular Cages From <i>C</i> ₄ -Symmetric Tetrapyridyl Metalloligands. Inorganic Chemistry, 2017, 56, 5471-5477.	1.9	12
232	Divergent and Stereoselective Synthesis of Tetraarylethylenes from Vinylboronates. Angewandte Chemie, 2020, 132, 20265-20273.	1.6	12
233	Anthracene-induced formation of highly twisted metallacycle and its crystal structure and tunable assembly behaviors. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	3.3	12
234	Self-assembled Pt(II) metallacycles enable precise cancer combination chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202255119.	3.3	12

#	Article	IF	Citations
235	Preparation and solvolysis of vinyl triflates. VIII. Secondary kinetic deuterium isotope effects in the solvolysis of vinyl triflates. Further evidence for a vinylidene phenonium ion. Journal of the American Chemical Society, 1973, 95, 2686-2687.	6.6	11
236	Shape-Persistent Acetylenic Macrocycles for Ordered Systems. , 2005, , 427-452.		11
237	Anion-Binding Macrocycles. , 0, , 315-347.		11
238	Bioactive Macrocyclic Peptides and Peptide Mimics., 0,, 1-27.		11
239	Self-sorting of multicomponent Pt(II) metallacages. Structural Chemistry, 2017, 28, 453-459.	1.0	11
240	Diamondoid Frameworks via Supramolecular Coordination: Structural Characterization, Metallogel Formation, and Adsorption Study. Inorganic Chemistry, 2019, 58, 6268-6275.	1.9	11
241	Design of a Metallacycleâ€Based Supramolecular Photosensitizer for In Vivo Imageâ€Guided Photodynamic Inactivation of Bacteria. Angewandte Chemie, 0, , .	1.6	11
242	Preparation and solvolysis of vinyl triflates. XIV. Further rearrangements in vinyl cations. Tetrahedron Letters, 1977, 18, 563-566.	0.7	10
243	Semiconducting Poly(arylene ethylene)s. , 2005, , 233-258.		10
244	Shape-Persistent Macrocycles Based on Acetylenic Scaffolding., 0,, 185-231.		10
245	Dualâ€Emissive Platinum(II) Metallacage with a Sensitive Oxygen Response for Imaging of Hypoxia and Imagingâ€Guided Chemotherapy. Angewandte Chemie, 2020, 132, 20383-20389.	1.6	10
246	Vinyl cations. Part 13. Secondary kinetic deuterium isotope effects in the solvolysis of ring-substituted \hat{l}^2 -styryl trifluoromethanesulphonates. Journal of the Chemical Society Perkin Transactions II, 1977, , 1486-1490.	0.9	9
247	Triphenylbismuth Difluoride–A Novel Reagent for the Oxidative Fluorination of P(III), Se(II) and Sb(III) Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 92, 225-229.	0.8	9
248	Thermally stable porous supramolecular frameworks based on the metal and ?-? stacking directed self-assembly of 2,6-pyridyldicarboxylic acid bis-4-pyridylamide. Journal of Physical Organic Chemistry, 2003, 16, 420-425.	0.9	9
249	Direct Observation of a Triplet-State Absorption-Emission Conversion in a Fullerene-Functionalized Pt(II) Metallacycle. Journal of Physical Chemistry C, 2017, 121, 14975-14980.	1.5	9
250	Concentration-dependent supramolecular patterns of C3 and C2 symmetric molecules at the solid/liquid interface. Colloids and Surfaces B: Biointerfaces, 2018, 168, 211-216.	2.5	9
251	Rotaxane and Catenane Synthesis. , 0, , 349-391.		8
252	A Fourâ€Component Heterometallic Cuâ€Pt Quadrilateral via Selfâ€Sorting. Chemistry - an Asian Journal, 2016, 11, 2662-2666.	1.7	8

#	Article	IF	CITATIONS
253	Doubleâ€Layered Supramolecular Prisms Selfâ€Assembled by Geometrically Nonâ€equivalent Tetratopic Subunits. Angewandte Chemie, 2021, 133, 1318-1325.	1.6	8
254	Metal–organic cycle-based multistage assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122398119.	3.3	8
255	Coordination-driven self-assembly of dibenzo-18-crown-6 functionalized Pt(II) metallacycles. Chinese Chemical Letters, 2023, 34, 107521.	4.8	8
256	Platinum(II)-Metallaclip-Based Theranostics for Cell Imaging and Synergetic Chemotherapy–Photodynamic Therapy. Inorganic Chemistry, 2023, 62, 1786-1790.	1.9	8
257	New Properties and Reactions in Self-Assembled M6L4 Coordination Cages. , 0, , 277-313.		7
258	A Near-Infrared BODIPY-Based Rhomboidal Metallacycle for Imaging-Guided Photothermal Therapy. Inorganics, 2022, 10, 80.	1.2	7
259	Polyynes Via Alkylidene Carbenes and Carbenoids. , 2005, , 259-302.		6
260	Thermo/Anion Dual-Responsive Supramolecular Organoplatinum–Crown Ether Complex. Organic Letters, 2020, 22, 4289-4293.	2.4	6
261	Emissive Platinum(II) Macrocycles as Tunable Cascade Energy Transfer Scaffolds. Angewandte Chemie, 0, , .	1.6	6
262	Ethenyl(phenyl)iodoniumâ€ŧrifluormethansulfonat [H ₂ CCHIPh][OSO ₂ CF ₃] ―Synthese und Verwendung als Vinylâ€Kationâ€Ã"quivalent. Angewandte Chemie, 1991, 103, 1549-1550.	1.6	5
263	Fastâ€Atomâ€Bombardmentâ€Massenspektrometrie zur Charakterisierung kationischer Chelate. Angewandte Chemie, 1996, 108, 2643-2648.	1.6	5
264	Cationic Ti Complexes with Three [N,O]-Type Tetrazolyl Ligands: Ti↔Fe Transmetalation within Fe Metallascorpionate Complexes. Inorganic Chemistry, 2017, 56, 14060-14068.	1.9	5
265	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
266	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
267	Secondary kinetic deuterium isotope effects in vinyl cations. Challenge, 1970, , 1614.	0.4	4
268	Electrochemical and photoelectronic spectral study of compounds with high ionization potentials: Anodic oxidation of vinyl triflates in aprotic solvents. Journal of Physical Organic Chemistry, 1990, 3, 670-676.	0.9	4
269	Alkynyl phosphates are potent inhibitors of serine enzyme. FEBS Letters, 1996, 392, 117-120.	1.3	4
270	Tetra-Urea Calix[4]arenesâ€" From Dimeric Capsules to Novel Catenanes and Rotaxanes. , 0, , 143-184.		4

#	Article	IF	CITATIONS
271	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
272	Multicomponent Coordination-Driven Self-Assembly of Fused <i>C</i> _{3<i>V</i>} Polygons. Organometallics, 2021, 40, 1-5.	1.1	4
273	An Organoplatinum(II) Metallacycle-Based Supramolecular Amphiphile and Its Application in Enzyme-Responsive Controlled Release. Inorganic Chemistry, 2022, 61, 8090-8095.	1.9	4
274	Supramolecular 3D Architectures by Metal-directed Assembly of Synthetic Macrocycles., 0,, 233-276.		3
275	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
276	Efficient one-pot synthesis of [3]catenanes based on Pt(<scp>ii</scp>) metallacycles with a flexible building block. Organic Chemistry Frontiers, 2021, 8, 5280-5288.	2.3	3
277	THERMODYNAMICS AND THEORETICAL CALCULATIONS. , 1979, , 6-23.		3
278	Pt Metallacage-based centimeter films for smart emissive poly(N-isopropylacrylamide) hydrogel devices. Materials Chemistry and Physics, 2022, 277, 125544.	2.0	3
279	Templated Synthesis of Polymers - Molecularly Imprinted Materials for Recognition and Catalysis. , 0, , 39-73.		2
280	Acetylenosaccharides., 2005, , 173-231.		2
281	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
282	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
283	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
284	ARYLVINYL CATIONS VIA SOLVOLYSIS. , 1979, , 290-447.		2
285	Alkynyl (Phenyl) Iodonium and Related Species., 0,, 1165-1182.		1
286	Ynol Ethers and Esters. , 0, , 1135-1164.		1
287	Biomimetic Reactions Directed by Templates and Removable Tethers. , 0, , 158-188.		1
	JACSPolicy on Manuscript Organization:Â Changes Concerning Back-to-Back Publications and Length of		

#	Article	IF	CITATIONS
289	Macrocycles by Ring-Closure Metathesis. , 0, , 29-67.		1
290	Virtual Issue Celebrating the Life and Career of Millie Dresselhaus. Chemistry of Materials, 2017, 29, 5017-5018.	3.2	1
291	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
292	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
293	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
294	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
295	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
296	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
297	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
298	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
299	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
300	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
301	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
302	INTRODUCTION AND HISTORICAL BACKGROUND. , 1979, , 1-5.		1
303	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
304	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
305	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
306	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1

#	Article	IF	CITATIONS
307	SPECTROSCOPIC EVIDENCE FOR VINYL CATIONS. , 1979, , 486-494.		O
308	Templated Synthesis of Catenanes and Rotaxanes. , 0, , 74-104.		0
309	Templated Synthesis of Carceplexes, Hemicarceplexes, and Capsules. , 0, , 105-131.		0
310	Template-Directed Ligation: Towards the Synthesis of Sequence Specific Polymers., 0,, 132-157.		0
311	Template Controlled Oligomerizations. , 0, , 219-248.		0
312	Templated or Not Templated, That is the Question: Analysis of Some Ring Closure Reactions. , 0, , 249-273.		0
313	Chiral Acetylenic Macromolecules. , 2005, , 453-494.		0
314	Self-selected formation of single discrete supramolecules with flexible, bidentate ligands in the coordination-driven self-assembly. , 2008, , .		0
315	Peer Review at the Journal of the American Chemical Society. Journal of the American Chemical Society, 2017, 139, 16431-16432.	6.6	0
316	Simplified Submission Requirements for Authors of <i>JACS</i> Communications. Journal of the American Chemical Society, 2018, 140, 4467-4467.	6.6	0
317	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
318	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
319	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
320	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Central Science, 2020, 6, 589-590.	5. 3	0
321	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
322	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
323	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
324	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0

#	Article	IF	CITATIONS
325	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		O
326	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
327	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
328	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
329	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
330	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
331	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
332	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
333	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
334	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
335	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
336	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
337	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
338	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
339	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
340	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
341	Confronting Racism in Chemistry Journals. Energy & Energy & 2020, 34, 7771-7773.	2.5	0
342	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0

#	Article	IF	Citations
343	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	O
344	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical & Description of Engineering Data, 2020, 65, 2253-2254.	1.0	0
345	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	O
346	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
347	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
348	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
349	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
350	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
351	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
352	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
353	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
354	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
355	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
356	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
357	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
358	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
359	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
360	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0

#	Article	IF	CITATIONS
361	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	O
362	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
363	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	O
364	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
365	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
366	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
367	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
368	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
369	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
370	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
371	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
372	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
373	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
374	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
375	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
376	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
377	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
378	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0

#	Article	IF	CITATIONS
379	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	O
380	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
381	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
382	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
383	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
384	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Energy & Description (1988) and Section (1988) and Sectio	2.5	0
385	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
386	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
387	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
388	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
389	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
390	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
391	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
392	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
393	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	O
394	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
395	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
396	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0

#	Article	IF	CITATIONS
397	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
398	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
399	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
400	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
401	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
402	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
403	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
404	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
405	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
406	BOND HETEROLYSIS., 1979,, 206-289.		0
407	REARRANGEMENT OF VINYL CATIONS. , 1979, , 448-485.		0
408	MISCELLANEOUS AND CONCLUSIONS., 1979,, 495-507.		0
409	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
410	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
411	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
412	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
413	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
414	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0

#	Article	IF	CITATIONS
415	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	O
416	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
417	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
418	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
419	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	4.6	0
420	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
421	Allene oxides and related species. , 0, , 859-879.		0